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1. Introduction

The object of this paper is to construct universal injective and projective objects

for the class of separable (real) Banach lattices.

It is well known that C[0, 1] is a universal injective Banach space for the class

of all separable Banach spaces—that is, any separable Banach space embeds

isometrically into C[0, 1]. Similarly, �1 is a universal projective Banach space

for the class of separable Banach spaces—every separable Banach space is a

quotient of �1. We construct similar objects in the lattice setting.

Below we briefly recall some essential notation. The reader is referred to [5]

or [6] for more information about Banach lattices.

Suppose E and F are Banach lattices. We say that u ∈ B(E,F ) is a lattice

homomorphism if it preserves lattice operations (it suffices to check that

u(x1 ∨ x2) = ux1 ∨ ux2 for any x1, x2 ∈ E; note that u is necessarily positive).

An operator which is both an isometry and a lattice homomorphism is referred

to as a lattice isometry.

We call q ∈ B(E,F ) a lattice quotient if there is an ideal I ⊂ E so that q

identifies F with E/I. Notice that q is a lattice quotient if and only if it has

the following properties: (i) q maps the open ball of E onto the open ball of F ,

and (ii) q is a lattice homomorphism. Indeed, in this case the formal identity

i : E/I → F is a lattice isometry; by [1], the same is true for i−1.

Throughout, we work with real lattices. We make use of two compact metriz-

able sets—the Hilbert cube H, and the Cantor set Δ (that can be regarded as

[0, 1]N, respectively {0, 1}N, equipped with the product topology). We use L1

as a shorthand for L1(0, 1).

The two theorems below represent the main results of this note.

Theorem 1.1: The Banach lattice C(Δ, L1) is injectively universal for the class

of separable Banach lattices. That is, any separable Banach lattice embeds

lattice isometrically into C(Δ, L1).

Theorem 1.2: There exists a separable Banach lattice X which is projectively

universal for the class of separable Banach lattices, that is, any separable Banach

lattice is lattice isometric to a quotient of X by a closed lattice ideal.

The proofs of Theorems 1.1 and 1.2 are given below.
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Remark 1.1: As a separable Banach lattice can have infinitely many generators,

no universal projective lattice can be finitely generated. However, the universal

injective lattice C(Δ, L1) can be generated by two elements. To verify this, we

use a technique similar to [6, Theorem V.2.10]. Recall that L1 is lattice isometric

to L1(Δ, μ), where μ is the Haar measure on Δ (see [3, §14–15]). The measure μ

can also be described as follows: consider ν = (δ0+δ1)/2 (a probability measure

on {0, 1}); then μ = νN is a probability measure on Δ = {0, 1}N. Note that the

set K = Δ × Δ is homeomorphic to Δ. Representing Δ as a compact subset

of R, and applying Stone’s Theorem (see [6, Theorem II.7.3]), we observe that

C(Δ) is generated by the identity 1 and the coordinate function. Thus,

C(K) ∼= C(Δ)

has two generators. To show that C(K) is dense in C(Δ, L1(Δ, μ)), note that

any f ∈ C(Δ, L1(Δ, μ)) is uniformly continuous. Hence, the functions of the

form
∑n

k=1 χAk
⊗ fk (where fk ∈ L1(Δ, μ), and Ak is a clopen subset of Δ) are

dense in C(Δ, L1(Δ, μ)).

2. The proof of Theorem 1.1

Let An, n ∈ N, be finite nonempty sets and let T̂ be the tree
⋃∞

k=0

∏k
n=1 An,

where, as usual, the product
∏k

n=1 An is defined to be ∅ if k = 0. Suppose that

σ = (a1, . . . , ak) ∈ ∏k
n=1 An; we say that σ has length k and write |σ| = k.

For any b ∈ Ak+1, we denote the element (a1, . . . , ak, b) ∈
∏k+1

n=1 An by (σ, b).

Let E be a Banach lattice. A family (xσ)σ∈ ̂T is said to be a finitely branch-

ing tree in E+ if

(a) xσ ∈ E+ for all σ ∈ T̂ ,

(b) for any σ ∈ T̂ with |σ| = k, (x(σ,b))b∈Ak+1
is pairwise disjoint and

xσ =
∑

b∈Ak+1

x(σ,b).

Observe that if (xσ)σ∈ ̂T is a finitely branching tree in E+, then by (b),

span{xσ : σ ∈ T̂} is a vector sublattice of E.

Proposition 2.1: Let E be a Banach lattice. Suppose that there is a finitely

branching tree (xσ)σ∈ ̂T in E+ so that E is the closed linear span of (xσ)σ∈ ̂T .

Then there exists a compact metric space K so that E is a lattice isometric to

a closed sublattice of C(K,L1).
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Proof. Obviously, under the given assumption, E is a separable Banach lattice.

Let K be the positive part of the closed ball of E∗, endowed with the weak∗

topology. Then K is a compact metrizable topological space. By rescaling

if necessary, we may assume that ‖x∅‖ ≤ 1. For each σ ∈ T̂ , the function

gσ : K → R given by gσ(x
∗) = x∗(xσ) is a nonnegative continuous function on

K. Furthermore, for all σ ∈ T̂ with |σ| = k, it follows from property (b) that

(1) gσ =
∑

b∈Ak+1

g(σ,b).

We now define functions fσ : K → L1, σ ∈ T̂ , inductively as follows. Let

f∅(x∗) = χ[0,g∅(x∗)]. By the continuity of g∅, we see that f∅ is a continuous

function from K into L1. In general, assume that fσ has been defined so that

fσ(x
∗) = χ[c(x∗),d(x∗)], where c, d : K → R are nonnegative continuous functions

so that d− c = gσ. Label the elements in Ak+1 as b1, . . . , br. Define f(σ,bi)(x
∗),

1 ≤ i ≤ r, to be the characteristic function of the interval

[
c(x∗) +

i−1∑
j=1

g(σ,bj)(x
∗), c(x∗) +

i∑
j=1

g(σ,bj)(x
∗)
]
.

By continuity of c and g(σ,bj), f(σ,bi) is a continuous function from K into L1

for each i. This completes the inductive definition of fσ, σ ∈ T̂ . It follows from

(1) that

(2) fσ =
∑

b∈Ak+1

f(σ,b) if |σ| = k

(equality in the L1 sense at each x∗ ∈ K). From (b) and (2), we see that

the map xσ �→ fσ, σ ∈ T̂ , extends to a linear map u from span{xσ : σ ∈ T̂}
into C(K,L1). By (b), for any y ∈ span{xσ : σ ∈ T̂}, one can derive that

y ∈ span{xσ : |σ| = k} for all sufficiently large k. In particular, span{xσ : σ∈ T̂ }
is a sublattice of E. Also, it is easy to check that if σ and τ are distinct elements

in T̂ of the same length, then fσ(x
∗) ∧ fτ (x

∗) = 0 (in L1) for each x∗ ∈ K. It

follows that the map u is a lattice homomorphism. Next, we show that u is an

(into) isometry. Let x ∈ span{xσ : σ ∈ T̂}. Write x =
∑

|σ|=k cσxσ for some

k ∈ N and cσ ∈ R. Then |x| = ∑
|σ|=k |cσ|xσ and

|ux| = u|x| =
∑
|σ|=k

|cσ|fσ.
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By construction, ‖fσ(x∗)‖L1 = gσ(x
∗) = x∗(xσ). Since K is the positive part

of the ball of E∗, one can derive that

‖ux‖ =‖|ux|‖ = sup
x∗∈K

∥∥∥∥ ∑
|σ|=k

|cσ|fσ(x∗)
∥∥∥∥
L1

= sup
x∗∈K

∑
|σ|=k

|cσ|‖fσ(x∗)‖L1

= sup
x∗∈K

∑
|σ|=k

|cσ|x∗(xσ) = sup
x∗∈K

x∗
( ∑

|σ|=k

|cσ|xσ

)

= sup
x∗∈K

x∗(|x|) = ‖|x|‖

=‖x‖.
Hence u is a lattice isometry from span{xσ : σ ∈ T̂} into C(K,L1). As

span{xσ : σ ∈ T̂} is dense in E by assumption, u extends to a lattice isome-

try from E into C(K,L1).

Proposition 2.2: Let E be a separable Banach lattice, regarded as a closed

sublattice of its bidual E∗∗. There is a Banach lattice F such that E ⊆ F ⊆ E∗∗,
F+ contains a finitely branching tree (xσ)σ∈ ̂T and span{xσ : σ ∈ T̂} is dense

in F .

Proof. Let (ei)
∞
i=1 be a countable dense subset of E consisting of nonzero vec-

tors. We shall construct recursively a finitely branching tree (xσ)σ∈ ̂T ⊂ E∗∗
+ so

that, for any 1 ≤ m ≤ n,

dist(em, span{xσ : |σ| = n}) < 2−n.

Then the proposition follows by taking F to be the closed linear span of (xσ)σ∈ ̂T

in E∗∗.
Start the construction by setting A0 = ∅ and

x∅ = e =

∞∑
i=1

|ei|
2i‖ei‖ .

Suppose that n ∈ N ∪ {0} and the sets A0, A1, . . . , An and vectors xσ ∈ E∗∗
+

(|σ| ≤ n) have already been selected so that condition (b) above is satisfied for

every σ with |σ| < n. In particular,∑
|σ|=n

xσ = e.
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Since for all 1 ≤ i ≤ n+1, ei lies in the principal ideal generated by e in E∗∗, by
Freudenthal’s Spectral Theorem [5, Theorem 1.2.18] and its proof, there exist

mutually disjoint z1, . . . , zN ∈ E∗∗
+ so that z1 + · · ·+ zN = e, and

dist(em, span{z1, . . . , zN}) < 2−(n+1)

for 1 ≤ m ≤ n+ 1. Denote by Pi the band projection from E∗∗ onto the band

generated by zi in E∗∗, 1 ≤ i ≤ N . Let An+1 = {1, . . . , N}; for σ ∈ ∏n
k=1 Ak

and i ∈ An+1, let x(σ,i) = Pixσ. Since xσ lies in the band B generated by e

in E∗∗ and
∑N

i=1 Pi is the band projection onto B, xσ =
∑

i∈An+1
x(σ,i). This

completes the inductive construction of (xσ)σ∈ ̂T , where T̂ =
⋃∞

k=0

∏k
n=1 An.

Clearly, (xσ)σ∈ ̂T is a finitely branching tree in E+. Furthermore, in the notation

above,

zi = Pie =
∑
|σ|=n

Pixσ =
∑
|σ|=n

x(σ,i).

Thus, for 1 ≤ m ≤ n+ 1,

dist(em, span{xσ : |σ| = n+ 1}) ≤ dist(em, span{z1, . . . , zN})
<2−(n+1).

Proof of Theorem 1.1. By Propositions 2.1 and 2.2, there are a compact met-

ric space K and a lattice isometry u from E into C(K,L1). It is well known that

there exists a continuous surjection π : Δ → K. Then the map j : E → C(Δ, L1)

given by jx = ux ◦ π is a lattice isometry.

3. The proof of Theorem 1.2

A few words of motivation before we begin the proof proper. Suppose that X is

a separable Banach lattice that is projectively universal for the class of separable

Banach lattices. For any separable Banach lattice E, there is a lattice quotient

q from X onto E. Then q∗BE∗ is a σ(X∗, X)-closed convex solid subset of the

σ(X∗, X)-compact metrizable space BX∗ . Let H be the Hilbert cube [0, 1]N. For

each separable Banach lattice E, we will present BE∗ as a closed convex solid

subset of the ball of M(H) = C(H)∗ on a different copy of H. We then stitch

these copies together to form a compact metric space, say K. The space X is

taken to be the completion of C(K) normed by the union of the copies of BE∗ .
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If V is a solid subset of BM(H), define a seminorm ρV on C(H) by

ρV (f) = sup
μ∈V

∣∣∣∣
∫

f dμ

∣∣∣∣.
Since V is solid, ρV is a lattice seminorm and ker ρV is a vector lattice ideal of

C(H). Thus C(H)/ kerρV is a vector lattice. Clearly, ρV induces a lattice norm

on C(H)/ kerρV , which we denote by ρ̃V .

Proposition 3.1: Let E be a separable Banach lattice. Then there exists a

σ(M(H), C(H))-closed convex solid subset VE of BM(H) such that E is lattice

isometric to the completion ofC(H)/ker ρVE with respect to the lattice norm ρ̃VE .

Proof. Choose a sequence (xn) in BE+ that is dense in BE+ . Set x =
∑ xn

2n .

There are a compact Hausdorff space L and a vector lattice isomorphism i

from C(L) onto the ideal Ex =
⋃

k[−kx, kx] of E. Furthermore, x = i1L,

where 1L is the constant function with value 1. Since xn ∈ Ex, xn = ifn

for some fn ∈ C(L). Let F be the closed (with respect to the sup-norm)

sublattice of C(L) generated by (fn)∪{1L}. Since F is an AM-space with unit,

there are a compact Hausdorff space K and a Banach lattice isomorphism j

from C(K) onto F such that j1K = 1L. The closed sublattice generated by

a countable set is separable [4]; see also [6, p. 143, Exercise 5(c)]. Hence F is

separable and thus K is metrizable. By [2, Theorem 4.14], there is an (into)

homeomorphism ϕ : K → H. Define q : C(H) → C(K) by qf = f ◦ ϕ. Then

T = i ◦ j ◦ q : C(H) → E is a vector lattice homomorphism and, in particular,

a bounded linear operator. Furthermore, TBC(H) ⊆ [−x, x] and ‖x‖ ≤ 1. Thus

‖T ‖ ≤ 1. Set VE = T ∗BE∗ . Then VE is a σ(M(H), C(H))-closed convex subset

of BM(H).

Next, we show that VE is solid in M(H). Suppose that |ν| ≤ |μ|, where

ν ∈ M(H) and μ ∈ VE . Choose x∗ ∈ BE∗ so that μ = T ∗x∗. For f ∈ C(H), if

|g| ≤ |f | we have that |Tg| = T |g| ≤ T |f | which implies that

|〈f, ν〉| ≤ 〈|f |, |ν|〉 ≤ 〈|f |, |μ|〉
= sup

|g|≤|f |
|〈g, μ〉| = sup

|g|≤|f |
|〈Tg, x∗〉|

≤ 〈T |f |, |x∗|〉
≤ ‖T |f |‖ ‖x∗‖ = ‖Tf‖‖x∗‖.
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It follows that y∗ : T (C(H)) → R given by y∗(Tf) = 〈f, ν〉 defines a bounded

linear functional on the subspace T (C(H)) of E. Since xn ∈ T (C(H)) for all n,

T (C(H)) is a dense subspace of E. Thus y∗ extends uniquely to an element in

E∗, which we denote still by y∗. By the computation above, ‖y∗‖ ≤ ‖x∗‖ and

hence y∗ ∈ BE∗ . Clearly, it follows from the definition that T ∗y∗ = ν. Hence

ν ∈ VE , as desired.

Finally, we show that the map S : (C(H)/ ker ρVE , ρ̃VE ) → E given by

Sf̃ = Tf

is a well-defined into lattice isometry. Since the image of S is T (C(H)) and hence

dense in E, the proof would be complete. If f ∈ ker ρVE , then 〈f, T ∗x∗〉 = 0 for

all x∗ ∈ BE∗ . Thus Tf = 0. This shows that S is well-defined. Furthermore,

for any f̃ ∈ C(H)/ ker ρVE ,

ρ̃VE (f̃) = ρVE (f) = sup
x∗∈BE∗

|〈f, T ∗x∗〉| = ‖Tf‖ = ‖Sf̃‖.

Hence S is an into isometry. Also,

|Sf̃ | = |Tf | = T |f | = S|f̃ |.

Therefore, S is a lattice homomorphism.

Since C(H) is separable, we have that BM(H) is a compact metric space

in the σ(M(H), C(H))-topology. Let d be a metric on BM(H) that gives the

σ(M(H), C(H))-topology. By a theorem of Hausdorff (see [2, Theorem 4.26]),

the set C of all σ(M(H), C(H))-closed subsets of BM(H) is compact with respect

to the Hausdorff metric D generated by d. Let f ∈ C(H). Then there is a

metric d′ on BM(H) that gives the σ(M(H), C(H))-topology and that

d′(μ, ν) ≥ |〈f, μ〉 − 〈f, ν〉| for all μ, ν ∈ BM(H).

Since BM(H) is σ(M(H), C(H))-compact, the formal identity map from

(BM(H), d) to (BM(H), d
′) is a uniform homeomorphism. Thus, if D′ is the

Hausdorff metric on C generated by d′, then D and D′ yield the same topology

on C.
Proposition 3.2: Let K be the set of all σ(M(H), C(H))-closed convex solid

subsets of BM(H). Then K is a closed subset of C. Consequently, K is a compact

set with respect to the Hausdorff metric D generated by d.
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Proof. Suppose that Vn∈K for all n and that D(Vn, V )→0 for some V ∈C. It
is easy to see that V is convex. Indeed, suppose that a, b ∈ V and 0≤ α≤ 1.

There are sequences (vn) and (wn) so that vn, wn∈Vn for each n∈N and that

d(vn, a), d(wn, b)→ 0, i.e., vn → a and wn → b with respect to σ(M(H), C(H)).

Then

αvn + (1 − α)wn → αa+ (1− α)b with respect to σ(M(H), C(H)).

Since each Vn is convex, αvn + (1− α)wn ∈ Vn. Hence

d(αvn + (1− α)wn, V ) ≤ D(Vn, V ) → 0.

Choose un ∈ V such that d(αvn+(1−α)wn, un) → 0. Then un → αa+(1−α)b

with respect to σ(M(H), C(H)). Hence αa + (1 − α)b ∈ V . Similarly, one can

show that V is symmetric.

Next, we show that V is solid (in BM(H)). Suppose on the contrary that there

are a, b so that |a| ≤ |b|, b ∈ V and a /∈ V . Since V is convex, symmetric and

σ(M(H), C(H))-closed, there exists f ∈ C(H) so that

〈f, a〉 > sup
v∈V

|〈f, v〉|.

As discussed above, there is a metric d′ on BM(H) so that its Hausdorff metric

D′ generates the same topology on C and that

d′(v1, v2) ≥ |〈f, v1〉 − 〈f, v2〉| for all v1, v2 ∈ BM(H).

Let w ∈ Vn. Since Vn is solid,

〈|f |, |w|〉 = sup
|u|≤|w|

|〈f, u〉|

≤ sup
u∈Vn

|〈f, u〉|

≤ sup
v∈V

|〈f, v〉|+D′(Vn, V ).

Choose (xn) so that xn ∈ Vn for each n and that d′(xn, b) → 0. For any ε > 0,

there exists g with |g| ≤ |f | such that

|〈g, b〉|+ ε ≥ 〈|f |, |b|〉.

We have

|〈g, b〉| = lim |〈g, xn〉| ≤ lim sup〈|f |, |xn|〉.
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It follows that

〈f, a〉 ≤ 〈|f |, |a|〉 ≤ 〈|f |, |b|〉
≤ lim sup

n
〈|f |, |xn|〉

≤ lim sup
n

(sup
v∈V

|〈f, v〉|+D′(Vn, V ))

= sup
v∈V

|〈f, v〉|,

contrary to the choice of f . This proves that V is solid.

Fix V ∈ K. Define qV : C(K × H) → C(H) by qV (f) = f|{V }×H. Let B be

the set
⋃

V ∈K q∗V (V ) and define ρB : C(K ×H) → R by

ρB(F ) = sup
μ∈B

|
∫

F dμ|.

Lemma 3.3: ρB is a lattice seminorm on C(K×H). Thus C(K ×H)/ kerρB is

a vector lattice. Denote the lattice norm induced by ρB on C(K × H)/ kerρB
by ρ̃B. The completion X of C(K×H)/ ker ρB with respect to ρ̃B is a separable

Banach lattice.

Proof. Since K × H is a compact metric space, C(K × H) is separable with

respect to the sup-norm. If V ∈ K, then V ⊆ BM(H) and it is clear that

q∗V (V ) ⊆ BM(K×H). Hence B ⊆ BM(K×H). It is then clear that ρB ≤ ‖ · ‖∞.

Let A be a countable dense subset of C(K ×H) with respect to the sup-norm.

Then {F̃ : F ∈ A} is a countable dense subset of C(K×H)/ ker ρB with respect

to ρ̃B. Thus X is separable.

If V ∈ K, identify {V } ×H with H.

Lemma 3.4: Let E be a separable Banach lattice. The mapQ :C(K×H)→C(H)

given by

QF = F|{VE}×H

has the following properties:

(1) Q(ker ρB) ⊆ ker ρVE and hence Q induces a map

Q̃ : C(K ×H)/ kerρB → C(H)/ kerρVE .

Q̃ is a lattice homomorphism.

(2) Q̃ maps the open ball in (C(K × H)/ kerρB, ρ̃B) onto the open ball in

(C(H)/ ker ρVE , ρ̃VE ).
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Proof. (1) Let F ∈ ker ρB. Thus
∫
F dμ = 0 for all μ ∈ B. In particular,∫

F dμ = 0 for all μ ∈ q∗VE
(VE). Let f = QF = F|{VE}×H and identify {VE}×H

with H. If ν ∈ VE , let μ = q∗VE
(ν). We have

0 =

∫
F dμ =

∫
qVEF dν =

∫
f dν.

This shows that ρVE (QF ) = 0. Since Q is obviously a lattice homomorphism,

so is Q̃.

(2) Let F̃ ∈ C(K × H)/ kerρB with ρ̃B(F̃ ) < 1. Then F ∈ C(K × H) and

ρB(F ) < 1. Let f = F|{VE}×H, identified as a function on H. For any ν ∈ VE ,

q∗VE
(ν) ∈ B and hence∣∣∣∣

∫
f dν

∣∣∣∣ =
∣∣∣∣
∫

qVEF dν

∣∣∣∣ ≤ ρB(F ) < 1.

Thus

ρVE (f) = sup
ν∈VE

∣∣∣∣
∫

f dν

∣∣∣∣ < 1.

We claim that the function V ∈ K �→ ρV (f) ∈ R is continuous. As per the

discussion preceding Proposition 3.2, there is a metric d′ on BM(H) so that

d′(ν1, ν2) ≥
∣∣∣∣
∫

f dν1 −
∫

f dν2

∣∣∣∣ for all ν1, ν2 ∈ BM(H)

and that the associated Hausdorff metric D′ generates the same topology as D

on K. Suppose that V,W ∈ K and D′(V,W ) < ε. Let ν ∈ V . There exists

ν′ ∈ W such that ∣∣∣∣
∫

f dν −
∫

f dν′
∣∣∣∣ ≤ d′(ν, ν′) < ε.

It follows that ρV (f) ≤ ρW (f) + ε. The claim follows by symmetry.

By continuity, there is an open neighborhood O of VE in K such that

sup
V ∈O

ρV (f) < 1.

Choose a continuous function h : K → [0, 1] such that h(VE) = 1 and that

h(V ) = 0 for all V /∈ O. Let G be the function on K ×H defined by

G(V, x) = h(V )f(x).

Then G ∈ C(K ×H). We have

ρB(G) = sup
V ∈K

sup
ν∈V

∣∣∣∣
∫

qV (G) dν

∣∣∣∣ = sup
V ∈K

h(V )ρV (f).
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If V /∈ O, then h(V ) = 0. Otherwise, 0 ≤ h(V ) ≤ 1. Hence

ρB(G) ≤ sup
V ∈O

ρV (f) < 1.

This proves that G̃ belongs to the open ball of (C(K×H)/ kerρB, ρ̃B). Finally,

Q̃G̃ = Q̃G = (G|{VE}×H)̃ = (h(VE)f )̃ = f̃ = F̃ .

Proof of Theorem 1.2. Let X be the separable Banach lattice defined in Lemma

3.3. Let E be a separable Banach lattice. By Proposition 3.1, there exists VE∈K
such that E is lattice isometric to the completion of (C(H)/ ker ρVE , ρ̃VE ). We

will identify E with the completion.

Define Q̃ as in Lemma 3.4. By the lemma, Q̃ extends uniquely to a lattice

homomorphism Q that maps the open ball of X onto the open ball of E. Hence

Q is a lattice quotient from X onto E. (See the Introduction.)
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