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Abstract. We show that for 1 ≤ p, q < ∞ with p/q /∈ N, the doubly
atomless separable LpLq Banach lattice Lp(Lq) is approximately ultra-
homogeneous (AUH) over the class of its finitely generated sublattices.
The above is not true when p/q ∈ N and p ̸= q. However, for any p ̸= q,
Lp(Lq) is AUH over the finitely generated lattices in the class BLpLq

of bands of LpLq lattices.

1. Introduction

In this paper, we explore the homogeneity properties (or lack thereof) of
the class of LpLq lattices under various conditions.

The following is taken from [6]: A Banach lattice X is an abstract LpLq
lattice if there is a measure space (Ω,Σ, µ) such that X can be equipped
with an L∞(Ω)-module and a map N : X → Lp(Ω)+ such that

• For all ϕ ∈ L∞(Ω)+ and x ∈ X+, ϕ · x ≥ 0,
• For all ϕ ∈ L∞(Ω) and x ∈ X, N [ϕ · x] = |ϕ|N [x].
• For all x, y ∈ X, N [x+ y] ≤ N [x] +N [y]
• If x and y are disjoint, N [x + y]q = N [x]q +N [y]q, and if |x| ≤ |y|,
then N [x] ≤ N [y].

• For all x ∈ X, ∥x∥ = ∥N [x]∥Lp .

When the abstract LpLq space is separable, it has a concrete represen-
tation: Suppose (Ω,Σ, µ) and (Ω′,Σ′, µ′) are measure spaces. Denote by
Lp(Ω;Lq(Ω

′)) the space of Bochner-measurable functions f : Ω → Lq(Ω
′)

such that the function N [f ], with N [f ](ω) = ∥f(ω)∥q for ω ∈ Ω, is in Lp(Ω).
The class of bands in LpLq lattices, which we denote by BLpLq, has certain
analogous properties to those of Lp spaces, particularly with respect to its
isometric theory.

LpLq lattices (and their sublattices) have been extensively studied for
their model theoretic properties in [6] and [7]. It turns out that while ab-
stract LpLq lattices themselves are not axiomatizable, the larger class BLpLq
is axiomatizable with certain properties corresponding to those of Lp spaces.
For instance, it is known that the class of atomless Lp lattices is separably
categorical, meaning that there exists one unique atomless separable Lp
lattice up to lattice isometry. Correspondingly, the class of doubly atomless
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BLpLq lattices is also separably categorical; in particular, up to lattice isom-
etry, Lp([0, 1];Lq[0, 1]), which throughout will just be referred to as Lp(Lq),
is the unique separable doubly atomless BLpLq lattice (see [7, Proposition
2.6]).

Additionally, when p ̸= q, the lattice isometries of LpLq lattices can be
characterized in a manner echoing those of linear isometries over Lp spaces
(with p ̸= 2). Recall from [1, Ch. 11 Theorem 5.1] that a map T : Lp(0, 1) →
Lp(0, 1) is a surjective linear isometry iff Tf(t) = h(t)f(ϕ(t)), where ϕ is
a measure-preserving transformation and h is related to ϕ through Radon-
Nikodym derivatives. If we want T to be a lattice isometry as well, then we
also have h positive (and the above characterization will also work for p = 2).
In [3] (for the case of q = 2) and [13], a corresponding characterization of
linear isometries is found for spaces of the form Lp(X;Y ), for certain p
and Banach spaces Y . In particular, for LpLq lattices with p ̸= q: given
f ∈ Lp(Ω;Lq(Ω

′)), where f is understood as a map from Ω to Lq, any
surjective linear isometry T is of the form

Tf(x) = S(x)
(
e(x)ϕf(x)

)
,

where ϕ is a set isomorphism (see [3] and [13] for definitions) e is a mea-
surable function related to ϕ via Radon-Nikodym derivatives, and S is a
Bochner-measurable function from Ω to the space of linear maps from Lq to
itself such that for each x, S(x) is a linear isometry over Lq.

In [11], Raynaud obtained results on linear subspaces of LpLq spaces,
showing that for 1 ≤ q ≤ p <∞, some ℓr linearly isomorphically embeds into
Lp(Lq) iff it embeds either to Lp or to Lq. However, when 1 ≤ p ≤ q < ∞,
for p ≤ r ≤ q, the space ℓr isometrically embeds as a lattice in Lp(Lq), and
for any p-convex and q-concave Orlicz function ϕ, the lattice Lϕ embeds lat-
tice isomorphically into Lp(Lq). Thus, unlike with Lp lattices whose infinite
dimensional sublattices are determined up to lattice isometry by the number
of atoms, the sublattices of LpLq are not so simply classifiable.

In fact, the lattice isometry classes behave more like the Lp linear isome-
tries, at least along the positive cone, as is evident in certain equimeasura-
bility results for LpLq lattices. In [11], Raynaud also obtained the following
on uniqueness of measures, a variation of a result which will be relevant in
this paper: let α > 0, α /∈ N, and suppose two probability measures ν1 and
ν2 on R+ are such that for all s > 0,∫ ∞

0
(t+ s)α dν1(t) =

∫ ∞

0
(t+ s)α dν1(t).

Then ν1 = ν2. Linde gives an alternate proof of this result in [8].
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Various versions and expansions of the above result appear in reference
to Lp spaces: for instance, an early result from Rudin generalizes the above
to equality of integrals over Rn: ([12]). Assume that α > 0 with α /∈ 2N,
and suppose that for all v ∈ Rn,

∫
Rn

(1 + v · z)α dν1(z) =
∫
Rn

(1 + v · z)α dν2(z)

Then ν1 = ν2. An application of this result is a similar condition by which
one can show that one collection of measurable functions F : Rn → R, with
f = (f1, ..., fn) is equimeasurable with another collection g = (g1, ..., gn) By
defining ν1 and ν2 as pushforward measures of F and G. In the case of
Lp spaces, if f and g are corresponding basic sequences whose pushforward
measures satisfy the above for α = p, then they generate isometric Banach
spaces. Raynaud’s result shows the converse is true for α ̸= 4, 6, 8, .... A
similar result inLp(Lq) from [7] holds for α = p/q /∈ N under certain con-
ditions, except instead of equimeasurable f and g, when the fi’s and g′is
are mutually disjoint and positive and the map fi 7→ gi generates a lattice
isometry, (N [f1], ..., N [fn]) and (N [g1], ..., N [gn]) are equimeasurable.

Recall that a space X is approximately ultrahomogeneous (AUH) over a
class G of finitely generated spaces if for all appropriate embeddings fi;E ↪→
X with i = 1, 2, for all E ∈ G generated by e1, ..., en ∈ E, and for all ε > 0,
there exists an automorphism ϕ : X → X such that for each 1 ≤ j ≤ n,
∥ϕ ◦ f1(ej)− f2(ej)∥ < ε.

X X

E

∃ϕ

f1

f2

In the Banach space setting, the embeddings are linear embeddings and
the class of finitely generated spaces are finite dimensional spaces. In the
lattice setting, the appropriate maps are isometric lattice embeddings, and
one can either choose finite dimensional or finitely generated lattices.

The equimeasurability results described above can be used to show an
approximate ultrahomogeneity of Lp([0, 1]) over its finite dimensional linear
subspaces only so long as p /∈ 2N (see [10]). Conversely, the cases where
p ∈ 2N are not AUH over finite dimensional linear subspaces, with coun-
terexamples showing linearly isometric spaces whose corresponding basis
elements are not equimeasurability. Alternate methods using continuous
Fräıssé Theory have since then been used to give alternate proofs of linear
approximate ultrahomogeneity of Lp for p /∈ 2N (see [5]) as well as lattice
homogeneity of Lp for all 1 ≤ p <∞ (see [2], [5]).
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This paper is structured as follows: in section 2, we first establish basic
notation and give a characterization of finite dimensional BLpLq lattices.
This characterization is used in subsequent sections for establishing both
equimeasurability and ultrahomogeneity results later on.

In section 3 we show that when p ̸= q, Lp(Lq) := Lp(Lq) is AUH over
the larger class of finite dimensional (and finitely generated) BLpLq spaces.
This is done by characterizing representations of BLpLq sublattices Lp(Lq)
in such a way that induces automorphisms over Lp(Lq) making the ho-
mogeneity diagram commute. The results here play a role in subsequent
sections as well.

In section 4, we prove that if in addition p/q /∈ N, Lp(Lq) is also AUH
over the class of its finitely generated sublattices. First, we determine the
isometric structure of finite dimensional sublattices of Lp(Lq) lattices by
giving an alternate proof of [7, Proposition 3.2] showing that two sublat-
tices E and F of Lp(Lq), with the ei’s and fi’s each forming the basis of
atoms, are lattice isometric iff (N [e1], ..., N [en]) and (N [f1), ..., N [fn]) are
equimeasurable. The equimeasurability result allows us to reduce a homo-
geneity diagram involving a finite dimensional sublattice of Lp(Lq) to one
with a finite dimensional BLpLq lattice, from which, in combination with
the results in section 3, the main result follows.

Section 5 considers the case of p/q ∈ N. Here, we provide a counterexam-
ple to equimeasurability in the case that p/q ∈ N and use this counterexam-
ple to show that in such cases, Lp(Lq) is not AUH over the class of its finite
dimensional lattices.

2. Preliminaries

We begin with some basic notation and definitions. Given a measurable
set A ⊆ Rn, we let 1A refer to the characteristic function over A. For a
lattice X, let B(X) be the unit ball, and S(X) be the unit sphere.

For elements e1, ..., en in some latticeX, use bracket notation< e1, ..., en >L
to refer to the Banach lattice generated by the elements e1, ..., en. In ad-
dition, we write < e1, ..., en > without the L subscript to denote that the
generating elements ei are also mutually disjoint positive elements in the
unit sphere. Throughout, we will also use boldface notation to designate a
finite sequence of elements: for instance, for x1, ..., xn ∈ R or x1, ..., xn ∈ X
for some lattice x, let x = (x1, ..., xn). Use the same notation to de-
note a sequence of functions over corresponding elements: for example, let
(f1, ..., fn) = f , or (f1(x1), ...fn(xn)) = f(x), or (f(x1), ..., f(xn)) = f(x).
Finally, for any element e or tuple e of elements in some lattice X, let β(e)
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and β(e) be the band generated by e and e in X, respectively.

Recall that Bochner integrable functions are the norm limits of simple
functions f : Ω → Lq(Ω

′), with f(ω) =
∑n

1 ri1Ai(ω)1Bi , where 1Ai and 1Bi

are the characteristic functions for Ai ∈ Σ and Bi ∈ Σ′, respectively. One
can also consider f ∈ Lp(Ω;Lq(Ω

′)) as a Σ ⊗ Σ′-measurable function such
that

∥f∥ =

(∫
Ω
∥f(ω)∥pq dω

)1/p

=

(∫
Ω

(∫
Ω′

|f(ω, ω′)|q dω′
)p/q

dω

)1/p

Unlike the more familiar Lp lattices, the class of abstract LpLq lattices is
not itself axiomatizable; however, the slightly more general class BLpLq of
bands in Lp(Lq) lattices is axiomatizable. Additionally, if X is a separable
BLpLq lattice, it is lattice isometric to a lattice of the form(⊕

p

Lp(Ωn; ℓ
n
q )

)
⊕p Lp(Ω∞; ℓq)

⊕p

(⊕
p

Lp(Ω
′
n;Lq(0, 1)⊕q ℓ

n
q )

)
⊕p Lp(Ω

′
∞;Lq(0, 1)⊕q ℓq).

BLpLq lattices may also contain what are called base disjoint elements. x
and y are base disjoint if N [x] ⊥ N [y]. Based on this, we call x a base atom
if whenever 0 ≤ y, z ≤ x with y and z base disjoint, then either N [y] = 0 or
N [z] = 0. Observe this implies that N [x] is an atom in Lp. Alternatively,
we call x a fiber atom if any disjoint 0 ≤ y, z ≤ x are also base disjoint.
Finally, we say that X is doubly atomless if it contains neither base atoms
nor fiber atoms.

Another representation ofBLpLq involves its finite dimensional subspaces.
We say that X is an (LpLq)λ lattice, with λ ≥ 1 if for all disjoint x1, ..., xn ∈
X and ε > 0, there is a finite dimensional F of X that is (1 + ε)-isometric
to a finite dimensional BLpLq space containing x′1, ..., x

′
n such that for each

1 ≤ i ≤ n, ∥xi − x′i∥ < ε. Henson and Raynaud proved that in fact, any
lattice X is a BLpLq space iff X is (LpLq)1 (see [6]). This equivalence can
be used to show the following:

Proposition 2.1. (Henson, Raynaud) If X is a separable BLpLq lattice,
then it is the inductive limit of finite dimensional BLpLq lattices.

The latter statement is not explicitly in the statement of Lemma 3.5 in
[6], but the proof showing that any BLpLq lattice is (LpLq)1 was demon-
strated by proving the statement itself.
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Throughout this paper, we refer to this class of finite dimensional BLpLq
lattices as BKp,q. Observe that if E ∈ BKp,q, then it is of the form ⊕p(ℓ

mi
q )N1

where for 1 ≤ k ≤ N , the atoms e(1, 1), ..., e(k,mk) generate ℓ
mk
q .

Proposition 2.2. Let E be a BKp,q sublattice of Lp(Lq) with atoms e(k, j)
as described above. Then the following are true:

(1) There exist disjoint measurable A(k) ⊆ [0, 1] such that for all i,
supp(e(k, j)) ⊆ A(k)× [0, 1],

(2) For all k and for all j, j′, N [e(k, j)] = N [e(k, j′)].

Conversely, if E is a finite dimensional sublattice of Lp(Lq) satisfying prop-
erties (1) and (2), then E is in BKp,q.

In order to prove this theorem, we first need the following lemma:

Lemma 2.3. Let 0 < r <∞, with r ̸= 1. suppose x1, ..., xn ∈ Lr+ are such
that

∥
n∑
1

xk∥rr =
∑

∥xk∥rr

Then the xi’s are mutually disjoint.

Proof. If r < 1, then∫
xi(t)

r + xj(t)
r dt = ∥xi∥rr + ∥xj∥rr =

∫
(xi(t) + xj(t))

r dt(1)

Now observe that for all t, (xi(t)+xj(t))
r ≤ xi(t)

r+xj(t)
r, with equality iff

either xi(t) = 0 or xj(t) = 0, so (xi+ xj)
r − xri − xrj ∈ L1+. Combined with

the above equality in line (1), since ∥(xi + xj)
r − xri − xrj∥1 = 0, it follows

that xi(t)
r + xj(t)

r = (xi(t) + xj(t))
r a.e., so xi must be disjoint from xj

when i ̸= j.

If r > 1, proceed as in the proof for r < 1, but with the inequalities
reversed, given that in this instance xi(t)

r + xj(t)
r ≤ (xi(t) + xj(t))

r for all
t.

□

Remark 2.4. The above implies that a BLpLq lattice X is base atomless
if it contains no bands lattice isometric to some Lp or Lq space. Indeed,
if there were a base atom e, then any two 0 ≤ x ⊥ y ≤ e would have to
have N -norms multiple to each other, so < x, y > is lattice isometric to ℓ2q .
Resultantly, the band generated by e is an Lq space. Similarly, if e is a fiber
atom, then any 0 ≤ x ⊥ y ≤ e is also base disjoint, which implies that the
band generated by e is an Lp space.

We now conclude with the proof of Proposition 2.2:
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Proof of Proposition 2.2. Observe that for each appropriate pair (k, j),(∫ 1

0
N [e(k, j)]p(s) ds

)q/p
= ∥N q[e(k, j)]∥p/q = 1

For notational ease, let E(k, j) = N q[e(k, j)]. Pick j1, ..., jn with each jk ≤
mk. Then, by disjointness of the e(k, j)’s, for all (ak)k ≥ 0 and all x =∑

k ake(k, jk),

∥
∑

ake(k, jk)∥q =
(∫ 1

0

(∑
k

aqkE(k, jk)(s)

)p/q
ds

)q/p
=

∣∣∣∣∣∣∣∣∑ aqkE(k, jk)

∣∣∣∣∣∣∣∣
p/q

.

Now since the e(k, jk)’s are isometric to ℓp,∣∣∣∣∣∣∣∣∑ aqkE(k, jk)

∣∣∣∣∣∣∣∣p/q
p/q

=
∑
i

apk =
∑
k

(aqk)
p/q =

∑
k

∥aqkE(k, jk)∥
p/q
p/q.

Since the E(k, jk)’s are all positive and p ̸= q, by Lemma 2.3, the E(k, jk)’s
are disjoint, that is, the e(k, jk)

′s are base disjoint.

For 1 ≤ k ≤ N , let A(1), ..., A(n) be mutually disjoint measurable sets
each supporting each E(k, j) for 1 ≤ j ≤ nk. Then each e(k, j) is supported
by A(k)× [0, 1]. Now we prove (2). Fix k, Then using similar computations
as above, and since the e(k, j)’s for fixed k generate ℓmk

q :

∥
∑
j

aje(k, j)∥q =
∣∣∣∣∣∣∣∣∑

j

aqjE(k, j)

∣∣∣∣∣∣∣∣
p/q

=
∑
j

aqj =
∑
j

aqj∥E(k, j)∥p/q

ByMinkowski’s inequality, as p ̸= q, equality occurs only when E(k, j)(s) =
E(k, j′)(s) a.e. for all 1 ≤ j, j′ ≤ ni.

To show the converse, it is enough to give the computation:

∥
∑
k,j

a(k, j)e(k, j)∥ =

(∫ 1

0

[ ∫ (∑
k,j

a(k, j)e(k, j)(s, t)

)q
dt

]p/q
ds

)1/p

=

(∑
k

∫ 1

0

[ ni∑
j=1

|a(k, j)|qE(k, j)(s)

]p/q
ds

)1/p

=

(∑
k

[ nk∑
j=1

|a(k, j)|q
]p/q ∫ 1

0
E(k, 1)p/q(s) ds

)1/p

=

(∑
k

[ nk∑
j=1

|a(k, j)|q
]p/q)1/p
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□

The following results will allow us to reduce homogeneity diagrams to
those in which the atoms e(k, j) of some E ∈ BKp,q are mapped by both
embeddings to characteristic functions of measurable A(k, j) ⊆ [0, 1]2. In
fact, we can further simplify such diagrams to cases where E is generated by
such e(k, j)’s which additionally are base-simple, i.e., N [e(k, j)] is a simple
function.

Proposition 2.5. Let 1 ≤ p ̸= q <∞ and let e ∈ S(Lp(Lq))+ be an element
with full support over [0, 1]2. Then there exists a lattice automorphism ϕ
from Lp(Lq) to itself such that ϕ(1) = e. Furthermore, ϕ can be constructed
to bijectively map both simple functions to simple functions and base-simple
functions to base-simple functions.

Proof. The proof is an expansion of the technique used in Lemma 3.3 from
[5]. Given a function g(y) ∈ Lq+, define g̃(y)q by g̃(y)q =

∫ y
0 g(t)

q dt, and

for notation, use ex(y) = e(x, y). Since e has full support, we may assume
that for all 0 ≤ x ≤ 1, N [e](x) > 0. From there, Define ϕ by

ϕ(f)(x, y) = f

(
Ñ [e](x)p,

ẽx(y)q
N q[e](x)

)
e(x, y)

e ≥ 0 and the rest of the function definition is a composition, so ϕ is a
lattice homomorphism. To show it is also an isometry, simply compute the
norm, using substitution in the appropriate places:

∥ϕ(f)∥p =
∫ 1

0

∣∣∣∣ ∫ 1

0
f

(
Ñ [e](x)p,

ẽx(y)q
N q[e](x)

)q
e(x, y)q dy

∣∣∣∣p/q dx
=

∫ 1

0

∣∣∣∣ ∫ 1

0
f(Ñ [e](x)p, y)

q dy

∣∣∣∣p/qNp[e](x) dx

=

∫ 1

0
N [f ](Ñ [e](x)p)

pNp[e](x) dx

=

∫ 1

0
Np[f ](x) dx = ∥f∥p.

To show surjectivity, let B ⊆ [0, 1]2 be a measurable set. Note that any

(x′, y′) ∈ [0, 1]2 can be expressed as (Ñ [e](x)p,
ẽx(y)q
Nq [e](x)) for some x, y, since

Ñ [e](x)p is an increasing continuous function from 0 to 1, while ẽx(y)q is
continuously increasing from 0 to N q[e](x). Thus there exists B′ such that
ϕ(1B′) = 1B · e, implying that ϕ’s image is dense in the band generated by
β(e) = Lp(Lq) since e has full support. Therefore, ϕ is also surjective.

Finally, ϕ consists of function composition into f multiplied by e, so if e
and f are simple, then it has a finite image, so if f is simple, then the prod-
uct is also simple, ϕ maps simple functions to simple functions, Conversely,
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if ϕ(f) is simple, then ϕ(f)/e is also simple. Thus f

(
Ñ [e](x)p,

ẽx(y)q
N [e](x)

)
has

a finite image. It follows that f itself has a finite image.

Using similar reasoning, if N [e] is simple, then whenever N [f ] is simple,
N [ϕ(f)] must also be simple, and likewise the converse is true, since by the

computation above, N [ϕ(f)](x) = N [f ](Ñ [e](x)p) ·N [e](x). □

3. Approximate Ultrahomogeneity of Lp(Lq) over BLpLq spaces

In this section, we show that for any 1 ≤ p ̸= q <∞, Lp(Lq) is AUH over
BKp,q.

Let f := (f1, ..., fn) and g := (g1, ..., gn) be sequences of measurable func-
tions and let λ be a measure in R. Then we say that f and g are equimea-
surable if for all λ-measurable B ⊆ Rn,

λ(t : f(t) ∈ B) = λ(t : g(t) ∈ B)

We also say that functions f and g in Lp(Lq) are base-equimeasurable if
N(f) and N(g) are equimeasurable.

Lusky’s main proof in [10] of linear approximate ultrahomogeneity in
Lp(0, 1) for p ̸= 4, 6, 8, ... hinges on the equimeasurability of generating el-
ements for two copies of some E =< e1, ..., en > in Lp containing 1. But
when p = 4, 6, 8, ..., there exist finite dimensional E such that two linearly
isometric copies of E in Lp do not have equimeasurable corresponding basis
elements. However, if homogeneity properties are limited to E with mutu-
ally disjoint basis elements, then E is linearly isometric to ℓnp , and for all
1 ≤ p < ∞, Lp is AUH over all ℓnp spaces. Note that here, an equimea-
surability principle (albeit a trivial one) also applies: Any two copies of

ℓnp =< e1, ..., en > into Lp(0, 1) with
∑

k ek = n1/p · 1 have (trivially)
equimeasurable corresponding basis elements to each other as well.

In the Lp(Lq) setting, similar results arise, except rather than comparing
corresponding basis elements fi(e1), ..., fi(en) of isometric copies fi(E) of
E, equimeasurability results hold in the Lq-norms N [fi(ej)] under similar
conditions, with finite dimensional BLpLq lattices taking on a role like ℓnp
does in Lp spaces.

The following shows that equimeasurability plays a strong role in the
approximate ultrahomogeneity of Lp(Lq) by showing that any automorphism
fixing 1 preserves base-equimeasurability for characteristic functions:

Proposition 3.1. Suppose p ̸= q, and let T : Lp(Lq) be a lattice auto-
morphism with T (1) = 1. Then there exists a function ϕ ∈ Lp(Lq) and a
measure preserving transformation ψ over Lp such that for a.e. x ∈ [0, 1],
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ϕ(x, ·) is also a measure preserving transformation inducing an isometry
over Lq, and for all f ,

Tf(x, y) = f(ψ(x), ϕ(x, y)).

Furthermore, for all measurable B1, ..., Bn ⊆ [0, 1]2 with 1Bi’s mutually dis-
joint, (1B1 , ...,1Bn) and (T1B1 , ..., T1Bn) are base-equimeasurable.

Proof. By the main result in [13], there exists a strongly measurable function
Φ : [0, 1] → B(Lq), a set isomorphism Ψ over Lp (see [13] for a definition
on set isomorphisms), and some e(x) ∈ Lp related to the radon-Nikodym
derivative of Ψ such that

Tf(x)(y) = Φ(x)(e(x)Ψf(x))(y),

and for a.e. x, Φ(x) is a linear isometry over Lq. Observe first that T sends
any characteristic function 1A×[0,1] ∈ Lp(Lq) constant over y to characteristic
function 1ψ(A)×[0,1] for some ψ(A) ⊆ [0, 1], so since 1A×[0,1] ∈ Lp(Lq) is
constant over y, we can just refer to it as 1A. Also, since T is a lattice
isometry, µ(A) = µ(ψ(A)), so ψ is measure preserving. Finally, observe
that N [1A] = 1A. Thus, for any simple function g :=

∑
ci1Ai ∈ Lp(Lq)+

constant over y with the Ai’s mutually disjoint, we have N [g] = g, and
Tg = g′. Then for all x,

N [g′](x) = N [Tg](x) = N [Φ(x)(eg′)](x) = e(x)N [Φ(x)(g′)][x] = |e(x)|N [g′](x)

It follows that |e(x)| = 1. We can thus adjust Φ by multiplying by −1
where e(x) = −1. Note also that Φ acts as a lattice isometry over Lp when
restricted to elements constant over y, so by Banach’s theorem in [1], the
map Φf(x) can be interpreted as Φ(x)( f(ψ(x)) ), where ψ is a measure pre-
serving transformation over [0, 1] inducing Ψ. By Banach’s theorem again for
Φ(x), this Φ can be interpreted by Φf(x, y) = e′(x, y)f(ψ(x), ϕ(x, y)), with
ϕ(x, ·) a measure preserving transformation for a.e. x. But since T1 = 1,
this e′(x, y) = 1 as well.

It remains to prove equimeasurability. Let 1B = (1B1 , ...,1Bn), and ob-
serve that since for a.e. x, ϕ(x, ·) is a measure preserving transformation
inducing a lattice isometry over Lq, it follows that

N q[1Bi ](x) = µ(y : (x, y) ∈ Bi) = µ(y : (x, ϕ(x, y)) ∈ Bi),

While

N q[T1Bi ](x) = µ(y : (ψ(x), ϕ(x, y)) ∈ Bi)

= µ(y : (ψ(x), y) ∈ Bi) = N q[1Bi ](ψ(x)).

Thus for each A =
∏
iAi with Ai ⊆ [0, 1] measurable, since ψ is also a

measure preserving transformation,

µ(x : (N q[1B](x) ∈ A) = µ(x : (N q[1B](ψ(x)) ∈ A) = µ(x : (N q[T1B](x) ∈ A),

and we are done.
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□

The following theorem describes a comparable equimeasurability property
of certain copies of LpLq in Lp(Lq) for any 1 ≤ p ̸= q <∞:

Theorem 3.2. Let 1 ≤ p ̸= q < ∞, and suppose that fi : E → Lp(Lq) are
lattice embeddings with E ∈ BKp,q generated by a (k, j)-indexed collection
of atoms e := (e(k, j))k,j with 1 ≤ k ≤ n and 1 ≤ j ≤ mk as described in
Proposition 2.2. Suppose also that f(

∑
k,j e(k, j)) = 1 · ∥

∑
e(k, j)∥. Then

(f1(e)) and (f2(e)) are base-equimeasurable.

Proof. Let η = ∥
∑

k,j e(k, j)∥, and note first that each 1
ηfi(e(k, j)) is of the

form 1Ai(k,j) for some measurableAi(k, j) ⊆ [0, 1]2. Second, N q[1Ai(k,j)](s) =
µ(Ai(k, j)(s)) with Ai(k, j)(s) ⊆ [0, 1] measurable for a.e. s, so by Propo-
sition 2.2, for each fixed k and each j, j′, µ(Ai(k, j)(s)) = µ(Ai(k, j

′)(s)) =
1
mk

1Ai(k)(s) with Ai(1), ..., Ai(n) ⊆ [0, 1] almost disjoint. It follows that for

each appropriate k, j, 1
η = 1

m
1/q
k

µ(Ai(k))
1/p, so µ(Ai(k)) =

(
m

1/q
k
η

)p
.

To show equimeasurability, observe that for a.e. t, we haveN q[1Ai(k,j)](s) =
1
mk

iff s ∈ Ai(k), and 0 otherwise. Let B ⊆
∏
k Rmk be a measurable

set. Note then that any (k, j)-indexed sequence (N [fi(e)](s)) is of the form

cis ∈
∏
k Rmk with cis(k, j) =

(
1
mk

)1/q

for some unique k, and cis(k, j) = 0

otherwise. It follows then that for some I ⊆ 1, ..., n,

µ(s : cis ∈ B) =
∑
k∈I

µ(Ai(k)) =
∑
k∈I

(
m

1/q
k

η

)
.

Since the above holds independent of our choice of i, we are done.
□

Remark 3.3. The above proof shows much more than base-equimeasurability
for copies ofBKp,q lattices in Lp(Lq). Indeed, if 1 ∈ E =< (e(k, j))k,j > with
E ∈ BKp,q, then each atom is in fact base-simple, and

∑
e(k, j) = η ·1 where

η = (
∑

km
p/q
k )1/p. Furthermore, there exist measurable sets A(1), ..., A(n)

partitioning [0, 1] with µ(A(k)) =
m

p/q
k
ηp such that N [e(k, j)] = η

m
1/q
k

1A(k).

Based on this, we can come up with a ”canonical” representation of E, with
e(k, j) 7→ η · 1Wk×Vk,j , where

Wk =
[ k−1∑
l=1

µ(A(l)),

k∑
l=1

µ(A(l))
]
, and Vk,j =

[
j − 1

mk
,
j

mk

]
.

This canonical representation will become relevant in later results.

Having characterized representations of lattice in BKp,q, we now move
towards proving the AUH result. Before the final proof, we use the following
perturbation lemma.
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Lemma 3.4. Let f : E → Lp(Lq) be a lattice embedding of a lattice E =<
e1, ..., en >. Then for all ε > 0, there exists an embedding g : E → Lp(Lq)
such that g(E) fully supports Lp(Lq) and ∥f − g∥ < ε.

Proof. Let Mk = supp
(
N [f(ek)]

)
\supp

(
N [f(

∑n−1
1 ek)]

)
. For each ek, we

will construct e′k disjoint from f(E) with support in Mk × [0, 1]. Let M ′ be
the elements in [0, 1]2 disjoint from f(E). Starting with n = 1, Observe that
M ′ can be partitioned by M ′ ∩Mk × [0, 1] :=M ′

k. Let

ηk(x, y) = ε1/q
N [f(ek)](x)

µ(M ′
k(x))

1/q
1M ′

k
(x, y).

When µ(M ′
k(x)) = 0, let ηk(x, y) = 0 as well. Now, let g′ : E → Lp(Lq)

be the lattice homomorphism induced by

g′(ek) = (1− ε)1/qf(ek) · 1Mk
+ ηn + f(ek) · 1Mc

k
.

First, we show that g′ is an embedding. Observe that for each k,

N q[g′(ek)](x) =

∫
ηqk(x, y) + (1− ε)f(ek)

q(x, y) dy

=

∫
ε
N q[f(ek)](x)

µ(M ′
k(x))

· 1M ′
k
(x, y) + (1− ε)f(ek)

q(x, y) dy

=εN q[f(ek)](x) + (1− ε)

∫
f(ek)

q(x, y) dy

=εN q[f(ek)](x) + (1− ε)N q[f(ek)](x) = N q[f(ek)](x).

It easily follows that g′(E) is in fact isometric to f(E), and thus to E.
Furthermore, for every k,

∥f(ek)− g′(ek)∥ =∥1Mk
[(1− (1− ε)1/q)f(ek) + ηk]∥

≤(1− (1− ε)1/q) + ε.

The above can get arbitrarily small.

Now, if supp(N(
∑
ek)) = [0, 1], let g = g′, and we are done. Other-

wise, let M̃ = ∪kMk, and observe that
∑
g′(ek) fully supports Lp(M̃ ;Lq).

Observe also that Lp(Lq) = Lp(M̃ ;Lq) ⊕p Lp(M̃
c;Lq). However, both

Lp(M̃ ;Lq) and Lp(M̃
c;Lq) are lattice isometric to Lp(Lq) itself. So there

exists an isometric copy of E fully supporting Lp(M̃
c;Lq). Let e′1, ..., e

′
n ∈

Lp(M̃
c;Lq) be the corresponding basic atoms of this copy, and let g(ei) =

(1− εp)1/pg′(ei) + ε · e′n. Then for x ∈ E,

∥g(x)∥p = (1− ε)∥g′(x)∥p + ε∥x∥p = ∥x∥p.
Using similar reasoning as in the definition of g′, one also gets ∥g− g′∥ <

(1− (1− ε)1/p) + ε, so g can also arbitrarily approximate f .
□
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Observe that the lemma above allows us to reduce the approximate ho-
mogeneity question down to cases where the copies of a BKp,q lattice fully
support Lp(Lq). Combined with Proposition 2.5, we can further reduce the
possible scenarios to cases where for each i, fi(x) = 1 for some x ∈ E. It
turns out these reductions are sufficient for constructing a lattice automor-
phism that makes the homogeneity diagram commute as desired:

Theorem 3.5. Suppose 1 ≤ p ̸= q < ∞, and for i = 1, 2, let fi : E →
Lp(Lq) be a lattice embedding with E :=< (e(k, j))k,j >∈ BKp,q and 1 ≤
k ≤ n and 1 ≤ j ≤ mk. Suppose also that each fi(E) fully supports Lp(Lq).
Then there exists a lattice automorphism ϕ over Lp(Lq) such that ϕ◦f1 = f2.

Proof. Let η = ∥
∑

k,j e(k, j)∥; by Proposition 2.5, we can assume that

for both i’s, we have fi(
∑

k,j e(k, j)) = η · 1. For notation’s sake, let

ei(k, j) := fi(e(k, j)). By Proposition 2.2, for each i there exist mutually
disjoint sets Ai(1), ..., Ai(n) partitioning [0, 1] such that for each 1 ≤ j ≤ mk,
supp(N [ei(k, j)]) = Ai(k). In addition, for the sets Ai(k, 1), ..., Ai(k,mk),
where Ai(k, j) := supp(ei(k, j)), partition Ai(k)× [0, 1]. It follows also from
the statements in Remark 3.3 that µ(A1(k)) = µ(A2(k)) for each k and

N q[ei(k, j)](x) =
ηq

mk
1Ai(k)(x).

To prove the theorem, it is enough to generate lattice automorphisms ϕi

mapping each band β(ei(k, j)) to a corresponding band β(1Wk×Vk,j ) where
Wk and Vk,j are defined as in Remark 3.3, with 1Ai(k,j) 7→ 1Wk×Vk,j .

To this end, we make a modified version of the argument in [7, Proposition
2.6] and adopt the notation in Proposition 2.5: construct lattice isometries
ψik,j from Lp(Ai(k));Lq(Vk,j)) to β(eik,j) with

ψik,j(f)(x, y) = f

(
x,

(
1̃Ai(k,j)

)
x
(y)q +

j − 1

mk

)
1Ai(k,j)(x, y)

By similar reasoning as in the proof of Proposition 2.5, ψik,j is a lattice em-

bedding. Surjectivity follows as well. Indeed, since N q[1Ai(k,j)](x) =
1
mk

, for

a.e. x ∈ Ai(k) the function
(
1̃Ai(k,j)

)
x
(y)q +

j−1
mk

matches [0, 1] continuously

to Vk,j with supp(ei(k, j)(x, ·)) mapped a.e. surjectively to Vk,j . So ψik,j ’s

image is dense in β(ei(k, j)).

Observe that ψik,j also preserves the random norm N along the base (that

is: N [f ] = N [ψik,j(f)]. Resultantly, the function ψik := ⊕jψ
i
j,k mapping

Lp(Ai(k), Lq(0, 1)) to ⊕jβ(ei(k, j)) is also a lattice automorphism. Indeed,
for f =

∑mk
1 fj with fj ∈ β(ei(k, j)), one gets
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∥ψik(f)∥ =

∣∣∣∣∣∣∣∣N [
∑
j

ψik,j(fj)]

∣∣∣∣∣∣∣∣
p

=

∣∣∣∣∣∣∣∣(∑
j

N q[ψik,j(fj)]
)1/q∣∣∣∣∣∣∣∣

p

=

∣∣∣∣∣∣∣∣(∑
j

N q[fj ]
)1/q∣∣∣∣∣∣∣∣

p

=

∣∣∣∣∣∣∣∣N [
∑
j

fj ]

∣∣∣∣∣∣∣∣
p

= ∥f∥

Now let ψi = ⊕kψ
i
k, and observe that given f =

∑n
1 fk with fk ∈ Lp(Ai(k), Lq(0, 1)),

since the fk’s are base disjoint, we have

∥ψif∥p =
n∑
1

∥ψikfk∥p =
n∑
1

∥fk∥p = ∥f∥p.

Thus ψi is a lattice automorphism over Lp(Lq) mapping each 1Ai(k)×Vk,j
to 1Ai(k,j).

Use [5, Lemma 3.3] to construct a lattice isometry ρi : Lp → Lp such that
for each k, ρi(1Wk

) = 1Ai(k). By [1, Ch. 11 Theorem 5.1] this isometry is
induced by a measure preserving transformation ρ̄i from [0,1] to itself such
that ρi(f)(x) = f(ρ̄i(x)). It is easy to show that ρi induces a lattice isometry
with f(x, y) 7→ f(ρ̄i(x), y). In particular, we have N [ρif ](x) = N [f ](ρ̄i(x))
, and ρi(1Wk×Vk,j ) = 1Ai(k)×Vk,j , now let ϕi(f) = (ψi ◦ ρi)(f), and we are
done.

□

Using the above, we can now show:

Theorem 3.6. For 1 ≤ p ̸= q <∞, the lattice Lp(Lq) is AUH for the class
BKp,q.

Proof. Let fi : E → Lp(Lq) as required, and suppose ε > 0. use Lemma 3.4
to get copies E′

i of fi(E) fully supporting Lp(Lq) such that for each atom
ek ∈ E and corresponding atoms eik ∈ E′

i, we have ∥fi(ek)− eik∥ < ε/2. now
use Theorem 3.5 to generate a lattice automorphism ϕ from Lp(Lq) to itself
such that ϕ(e1k) = e2k. Then

∥ϕ(f1(ek))− f2(ek))∥ ≤ ∥ϕ(f1(ek)− e1k)∥+ ∥e2k − f2(ek)∥ < ε

□

Remark 3.7. Observe that the doubly atomless Lp(Lq) space is unique
among separable BLpLq spaces that are AUH over BKp,q. Indeed, this
follows from the fact that such a space must be doubly atomless to begin
with: let E be a one dimensional space generated by atom e and suppose X
is not doubly atomless. Suppose also that E is embedded by some f1 into
a part of X supported by some Lp or Lq band, and on the other hand is
embedded by some f2 into F := ℓ2p(ℓ

2
q) with f2(e) a unit in F . Then one

cannot almost extend f1 to some lattice embedding g : F → X with almost
commutativity.
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One can also expand this approximate ultrahomogeneity to separable
sublattices with a weaker condition of almost commutativity in the dia-
gram for generating elements: for any BLpLq sublattice E generated by
elements < e1, ..., en >L, for any ε > 0, and for all lattice embedding pairs
fi : E → Lp(Lq), there exists a lattice automorphism g : Lp(Lq) → Lp(Lq)
such that for all j = 1, ..., n, ∥g(f2(ej))− f1(ej)∥ < ε.

Theorem 3.8. For all 1 ≤ p ̸= q < ∞, The lattice Lp(Lq) is AUH for the
class of finitely generated BLpLq lattices.

Proof. Let E =< e1, ...en >L, and let fi : E → Lp(Lq) be lattice embed-
dings. We can assume that ∥ek∥ ≤ 1 for each 1 ≤ i ≤ n. By Proposition 2.1,
E is the inductive limit of lattices in BKp,q. Given ε > 0, pick a BKp,q lat-
tice E′ =< e′1, ..., e

′
m >⊆ E such that for each ek, there is some xk ∈ B(E′)

such that ∥xk − ek∥ < ε
3 . Each fi|E′ is an embedding into Lp(Lq), so pick

an automorphism ϕ over Lp(Lq) such that ∥ϕ ◦ f1|E′ − f2|E′∥ < ε
3 . Then

∥ϕf1(ek)−f2(ek)∥ ≤ ∥ϕf1(ek−xk)∥+∥ϕf1(xk)−f2(xk)∥+∥f2(xk−ek)∥ < ε.

□

We can also expand homogeneity to include not just lattice embeddings
but also disjointness preserving linear isometries, that is, if embeddings
fi : E → Lp(Lq) are not necessarily lattice homomorphisms but preserve
disjointness, then there exists a disjointness preserving linear automorphism
ϕ over Lp(Lq) satisfying almost commutativity:

Corollary 3.9. Lp(Lq) is AUH over finitely generated sublattices in BLp(Lq)
with disjointness preserving embeddings.

Proof. Use the argument in [5, Proposition 3.2] to show that Lp(Lq) is dis-
jointness preserving AUH over BKp,q. From there, proceed as in the ar-
gument in Theorem 3.8 to extend homogeneity over BKp,q to that over
BLpLq. □

4. Approximate Ultrahomogeneity of Lp(Lq) when p/q /∈ N

The above results largely focused approximate ultrahomogeneity over
BLpLq lattices. What can be said, however, of sublattices of LpLq spaces?
The answer to this question is split into two cases: first, the cases where
p/q /∈ N, and the second is when p/q ∈ N. We address the first case in this
section. It turns out that if p/q /∈ N, then Lp(Lq) is AUH for the class of
its finitely generated sublattices. The argument involves certain equimea-
surability properties of copies of fixed finite dimensional lattices in Lp(Lq).
Throughout, we will refer to the class of sublattices of spaces in BKp,q as

simply Kp,q, and let Kp,q be the class of finitely generated sublattices of
Lp(Lq).
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The following result appeared as [7, Proposition 3.2], which is a multi-
dimensional version based on Raynaud’s proof for the case of n = 1 (see [11,
lemma 18]). The approach taken here is a multi-dimensional version of the
proof of Lemma 2 in [8].

Theorem 4.1. Let r = p/q /∈ N, and suppose fi : E → Lp(Lq) are lattice
isometric embeddings with E =< e1, ..., en >. Suppose also that f1(x) =
f2(x) = 1 for some x ∈ E+. Then f1(e) and f2(e) are base-equimeasurable.

Throughout the proof, let µ be a measure in some interval In ⊆ C := Rn+.
To this end, we first show the following:

Lemma 4.2. Suppose 0 < r /∈ N, and α, β are positive finite Borel measures
on C such that for all v ∈ C with v0 > 0,∫

C
|v0 + v · z|r dα(z) =

∫
C
|v0 + v · z|r dβ(z) <∞.

Then α = β.

Proof. It is equivalent to prove that the signed measure ν := α−β = 0. First,
observe that since |ν| ≤ α+β, and for any v ≥ 0,

∫
|v0+v ·z|r d|ν|(z) <∞.

Now, we show by induction on polynomial degree that for all k ∈ N,
v ≥ 0, and for all multivariate polynomials P (z) of degree k′ ≤ k,

∗
∫
C
|v0 + v · z|r−kP (z) dν(z) = 0.

This is true for the base case k = 0 by assumption. Now assume it is
true for k ∈ N and let k′ :=

∑
li ≤ k with l ∈ Nn. For notational ease, let

zl = zl11 ...z
ln
n . Then for each vi and 0 < t < 1,∫
Rn

+

zl
(v0 + v · z+ zit)

r−k − (v0 + v · z)r−k

t
dν(z) = 0.

Now, if k + 1 < r and t ∈ (0, 1), then∣∣∣∣zl (v0 + v · z+ zit)
r−k − (v0 + v · z)r−k

t

∣∣∣∣ ≤ zlzi(r − k)(v0 + v · z+ vi)
r−k−1

≤r − k

vlvi
(v0 + v · z+ vi)

r

Since in this case, 0 < r − k − 1 < r and |ν| < ∞, the right hand side
must also be |ν|-integrable. On the other hand, If k + 1 > r, then we have∣∣∣∣zl (v0 + v · z+ vit)

r−k − (v0 + v · z)r−k

t

∣∣∣∣ < |r − k| v
r
0

vlvi
which is also |ν|-integrable. So now we apply Lebesgue’s differentiation
theorem over vi to get, for any k ∈ N and for each 1 ≤ i ≤ n:
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∫
C
zlzi|v0 + v · z|r−k−1 dν(z) = 0,

since r /∈ N. A similar argument, deriving over v0, can be made to show
that ∫

C
|v0 + v · z|r−k−1 dν(z) = 0

One can make linear combinations of the above, which implies line ∗.

Now for fixed v > 0, v0 > 0 we define a measure Λ on C, where for
measurable B ⊆ Rn+,

Λ(B) =

∫
ϕ−1(B)

|v0 + v · z|r dν(z).

where ϕ(z) = 1
v0+v·zz. It is sufficient to show that Λ = 0. Observe first

that ϕ is continuous and injective; indeed, if ϕ(z) = ϕ(w), then it can be
shown that v · w = v · z. Thus w

v0+v·z = z
v0+v·z , implying that w = z.

Resultantly, ϕ(B) for any Borel B is also Borel, hence we will have shown
that for any such B, ν(B) = 0 as well, so ν = 0.

Observe that by choice of v > 0 and and since (v0 + v · z) > 0 for all
z ∈ Rn+, have

|Λ|(B) =

∫
ϕ−1(B)

|v0 + v · z|r d|ν|(z).

Using simple functions and the definition of Λ, one can show both that
for each i, we have

∗ ∗ mi(k) :=

∫
C
wki d|Λ|(w) =

∫
C
(v0 + v · z)r−kzki d∥ν|(z) <∞

and also that ∫
C
wki dΛ(w) =

∫
C
|v0 + v · z|r−kzki dν(z) = 0,

More generally, if k =
∑

i li, then∫
C
wl dΛ(w) =

∫
C
zl|v0 + v · z|r−k dν(z) = 0,

So it follows that
∫
C P (w) dΛ(w) = 0 for all polynomials P (w).
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Now if k > r and ν ̸= 0, since vi > 0, we then we have

mi(k) =

∫
C
|v0 + v · z|r−kzki d∥ν|(z)

≤
∫
C
|v0 + v · z|rv−ki d|ν|(z) ≤ v−ki |Λ|(C) <∞

so

mi(k)
−1/2k ≥ v

1/2
i |Λ|(C)−1/2k

Thus for each 1 ≤ i ≤ n,
∑

kmi(k)
−1/2k = 0. So by [4, Theorem

5.2], |Λ| is the unique positive measure over C with moment values mi(k).
Since |Λ| + Λ yields the same values, and by **,

∫
C P (w) d(|Λ| + Λ)(w) =∫

C P (w) d|Λ|(w), it follows that Λ = 0, so ν = 0.
□

Now we are ready to prove Theorem 4.1.

Proof. For simplicity of notation, let F ij = N q[fi(ej)] and I = [0, 1]. By

definition of N , the support of F ij as well as of µ is the unit interval. Define
positive measures αj by

αi(B) = µ({t ∈ I : Fi(t) ∈ B}) = µ((Fi)−1(B)).

Now, for any measurable B ⊆ C, we have∫
C
1B(z) dai(z) = αi(B) = µ((Fi)−1(B)) =

∫
I
(1B ◦ Fi)(t) dt

so for any simple function σ over C,∫
C
σ(z) dαi =

∫ 1

0
σ ◦ Fi(t) dt

Using simple functions to approximate |v0+v·z|r, and given that |v0+v·z|r
is in L1(C, µ) and the support of µ is the unit interval, it follows that∫

C
|1 + v · z|r dαi(z) =

∫ 1

0
|1 + v · Fi(t)|r dt.

It is sufficient now to show that for all v ∈ Rn+,∫ 1

0
|1 + v · F1(t)|r dt =

∫ 1

0
|1 + v · F2(t)|r dt.

.
For i, j and s ∈ [0, 1], let M j

i = {(s, t) : (s, t) ∈ supp(fi(ej))}, and let

M j
i (s) = {t : (s, t) ∈ M j

i }. By assumption, x =
∑

j xjej with xj > 0, so

1 = N q[fi(x)] =
∑

j x
q
jF

i
j . Therefore, since each fi is an embedding, for all

c ∈ Rn+,
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∥
∑
j

cjej∥p =
∣∣∣∣∣∣∣∣(∑

j

cqjF
i
j (s)

)1/q∣∣∣∣∣∣∣∣
p

=

∣∣∣∣∣∣∣∣(1+
∑
j

(cqj − xqj)F
i
j (s)

)1/q∣∣∣∣∣∣∣∣
p

Let vj := cqj − xqj : then in particular it follows that for all v ≥ 0, we have∫ 1

0

(
1 + v · F1(s)

)p/q
ds =

∫ 1

0

(
1 + v · F2(s)

)p/q
ds.

By Lemma 4.2, we can conclude that α1 = α2, so F1 and F2 are equimea-
surable. □

Using Theorem 4.1, we can uniquely characterize lattices in Kp,q in a way
that parallels Proposition 2.2.

Theorem 4.3. Suppose that p/q /∈ N, and let E ⊆ Lp(Lq) with E =<
e1, ..., em >. Then the following hold:

• E ∈ Kp,q iff there exist mutually disjoint measurable functions ϕ(k, j) ∈
S(Lp(Lq))+, with 1 ≤ j ≤ n and 1 ≤ k ≤ L such that for each j,
ej ∈< (ϕ(k, j))k >= ℓnp , and < (ϕ(k, j))k,j >∈ BKp,q.

• Suppose fi : E → Lp(Lq) is a lattice embedding with i = 1, 2 and
E ∈ Kp,q. Then there exist embeddings f ′i : E

′ → Lp(Lq) extending
fi such that E′ ∈ BKp,q.

Lp(Lq) Lp(Lq)

E′

E

f ′1 f ′2

f1 f2

ι

Proof. For part 1, clearly the reverse direction is true. To prove the main
direction, we can suppose that E fully supports Lp(Lq). If not, recall that
the band generated by E is itself doubly atomless, and hence is lattice iso-
metric to Lp(Lq) itself. Thus, if under these conditions, there is a BLpLq
sublattices extending E as in the statement of the theorem, it will also be
the case in general.

By Proposition 2.5, we can also suppose that
∑

j ej = η · 1. Now by

assumption, since E ∈ Kp,q, then there is an embedding ψ : E → Ẽ ∈ BKp,q

such that each ψ(ej) =
∑

k x(k, j)ẽ(k, j), with 1 ≤ k ≤ m′
k. Without loss

of generality we may also drop any ẽ(k, j)’s disjoint from ψ(E) and assume

that ψ(E) fully supports Ẽ. Now Ẽ is a BKp,q lattice admitting a canonical
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representation in Lp(Lq) as described in Theorem 3.2 and Remark 3.3.

So we can assume that ψ embeds E into Lp(Lq) in such a way that ψ(E)
fully supports it and each ψ(ej) is both simple and base-simple. Now, use
Proposition 2.5 to adjust ψ into an automorphism over Lp(Lq) such that
ψ(

∑
ej) = η · 1 in a way that preserves both simplicity and base-simplicity.

By Theorem 4.1, ψ(e) and e are base-equimeasurable. Since the ψ(k, j)′s
are base-simple, there exist tuples s1, ..., sL ∈ Rm such that for a.e. t ∈ [0, 1],
there is some k ≤ L such that N [e](t) = sk. By equimeasurability, the same
is true for N [ψ(e)](t).

Let Sk = {t : N [e](t) = sk}, and let Skj = Sk × [0, 1] ∩ supp(ej). Let

S
k
= {t : N [ψ(e)](t) = sk} with S

k
j defined similarly. Note that each 1Sk

j

is also base-characteristic, as N [1Sk
j
] = ckj1Sk for some ckj > 0, so for fixed

k and for any j, j′ ≤ mk, we must have that N [1Sk
j
] and N [1Sk

j′
] are scalar

multiples of each other. Thus for each appropriate pair (k, j) with skj > 0,

define ϕ(k, j) by
1
Sk
j

∥1
Sk
j
∥ . By definition of Sk, for any k ̸= k′ and any appropri-

ate j, j′, ϕ(k, j) and ϕ(k′, j′) are fiber-disjoint, and N [ϕ(k, j)] = N [ϕ(k, j′)].
Thus by Proposition 2.2, < (ϕ(k, j))k,j >∈ BKp,q.

To prove part 2, Observe first that we have already essentially proven part
2 in the case that f1 = Id and f2 = ψ. To show the general case, we first
assume that for each i,

∑
fi(ej) maps to 1. Now, by Theorem 4.1, f1(e)

and f2(e) are also base-equimeasurable, but by the procedure for part 1, we
also know that each fi(ej) is also base-simple. Define s1, ..., sL as above, and

Let Sk(i) = {t : N [fi(e)](t) = sk}. Define similarly Skj (i) and the associated

characteristic functions ϕi(k, j) for appropriate pairs k, j such that 1 ≤ k ≤ l
and skj := ∥ϕi(k, j) ∧ fi(ej)∥ > 0. Note first that

fi(ej) =
∑

k:sk(j)>0

skjϕi(k, j).

Second, observe that by equimeasurability, the eligible pairs (k, j) are the
same for i = 1, 2. Let E′

i =< (ϕi(k, j))k,j >. Clearly E′
i ∈ BKp,q, and

since the eligible pairs (k, j) are the same, E′
1 and E′

2 are isometric to each
other. Let E′ be one of the E′

i’s and let f ′i : E
′ → Lp(Lq) be the expected

embedding mapping E′ to E′
i, and we are done. □

From here, we can now easily extend Theorem 3.5 to lattices in Kp,q:

Corollary 4.4. Suppose p/q /∈ N and suppose fi : E → Lp(Lq) are lattice
embeddings from E ∈ Kp,q with fi(E) fully supporting Lp(Lq). Then there
exists a lattice automorphism ϕ over Lp(Lq) such that f2 = ϕ ◦ f1.
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Proof. Use Theorem 4.3 to generate a BKp,q lattice E′ containing E and
lattice embeddings f ′i : E

′ → Lp(Lq) such that f ′i |E = fi. Clearly each f ′i(E
′)

fully supports Lp(Lq). Now apply Theorem 3.5 to generate an automorphism
ϕ over Lp(Lq) with ϕ ◦ f ′1 = f ′2. Clearly ϕ ◦ f1 = f2 as well.

□

When p/q /∈ N, using Theorem 4.3, we can show that the same holds with
the more general class Kp,q. However, we can make an even stronger claim
by showing that homogeneity holds for any finite dimensional sublattice of
Lp(Lq). This is done using the following result, which gives a standard way
of approximating finite dimensional sublattices of Lp(Lq) with lattices in
Kp,q.

Lemma 4.5. Suppose p/q /∈ N, and let fi : E → Lp(Lq) be embeddings
with E =< e1, ..., en >. Then for all ε > 0, there exists a Kp,q lattice
E′ =< e′1, ..., e

′
n > and embeddings gi : E′ → Lp(Lq) such gi(E

′) fully
supports Lp(Lq) and for each n, ∥fi(en)− gi(e

′
n)∥ < ε.

Proof. We can assume each fi(E) fully supports Lp(Lq): given ε > 0, use
Lemma 3.4 to get copies of E sufficiently close to each fi(E) with full sup-
port. We then also assume that fi(

∑n
1 ek) = 1 using Proposition 2.5.

By Theorem 4.1, f1(e) and f2(e) are base-equimeasurable. In particu-
lar, given any measurable C ∈ Rn, one has µ(t : N [f1(e)](t) ∈ C) = µ(t :
N [f2(e)](t) ∈ C). Now pick an almost disjoint partition C1, ..., Cm of S(ℓn1 ),
where each Ci is closed, has relatively non-empty interior, and is of diameter
less than ε

2n . Let Di
k = {t : N [fi(e)](t) ∈ Ci\ ∪i−1

j Cj}. Then by equimea-

surability, µ(D1
k) = µ(D2

k). For each k, pick some sk = (sk1, ..., s
k
n) ∈ Ck, and

for each x ∈ Di
k, let

eij(x, y) =
skj

N [fi(ej)](x)
fi(ej)(x, y).

Observe that ∥
∑

j e
i
j −

∑
j fi(ej)∥ < ε, and N [eij ](x) = skj for x ∈ Di

k.

Consider now the lattice E′ =< e1j , ..., e
1
n >. Now, for any linear combi-

nation
∑
aje

i
j , we have, as in the argument in Proposition 2.5, that

∥
∑

aje
i
j∥p =

M∑
k

(
∑
j

(ajs
k
j )
q)p/q

implying that ∥
∑
aje

1
j∥ = ∥

∑
aje

2
j∥. It follows both that E′ embeds into

ℓMp (ℓnq ), implying that it is a Kp,q lattice, and it is isometric to the lattice

generated by the e2j ’s. Let e′j = e1j , and define gi : E′ → Lp(Lq) as the

maps generated by gi(e
′
j) = eij . Clearly these are lattice embeddings and

∥fi(ej)− gi(e
′
j)∥ < ε.

□
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Theorem 4.6. For all 1 ≤ p, q < ∞ with p/q /∈ N, the lattice Lp(Lq) is
AUH for the class of finite dimensional sublattices of LpLq lattices.

Proof. It is sufficient to show that the result is true over generation by basic
atoms. Let fi : E → Lp(Lq) be two embeddings with E =< e1, ..., en >.
Use Lemma 4.5 to find gi : E

′ → Lp(Lq), with E′ :=< e′1, ..., e
′
n >∈ Kp,q,

∥gi(e′k) − fi(ek)∥ < ε/2, and each gi(E
′) fully supporting Lp(Lq). Then by

Lemma 4.4, there exists an automorphism ϕ : Lp(Lq) → Lp(Lq) such that
ϕ ◦ g1 = g2. Note then that ∥ϕ(f1(ek)) − f2(ek)∥ ≤ ∥ϕ(f1(ek) − g1(e

′
k))∥ +

∥f2(ek)− g2(e
′
k)∥ < ε. □

In a manner similar to that of Theorem 3.8, we can also extend the AUH
property to finitely generated sublattices of Lp(Lq) as well:

Theorem 4.7. For all 1 ≤ p, q < ∞ with p/q /∈ N, The lattice Lp(Lq) is

AUH for the class Kp,q of its finitely generated lattices.

Proof. Suppose E ⊆ Lp(Lq) is finitely generated. Then since E is order con-
tinuous and separable, it is the inductive limit of finite dimensional lattices
as well, so pick a finite dimensional E′ with elements sufficiently approxi-
mating the generating elements of E, and proceed with the same proof as
in Theorem 3.8. □

The argument used in Corollary 3.9 can also be used to show:

Corollary 4.8. For p/q /∈ N, Lp(Lq) is disjointness preserving AUH over

Kp,q.

Remark 4.9. Lp(Lq) for p/q /∈ N is AUH over the entire class of its finitely
generated sublattices, a property which is equivalent to such a class being a
metric Fräıssé class with Lp(Lq) as its Fräıssé limit. Recall that a class K
of finitely generated lattices is Fräıssé if it satisfies the following properties:

(1) Hereditary Property (HP): K is closed under finitely generated sub-
lattices.

(2) Joint Embedding Property (JEP): any two lattices in K lattice embed
into a third in K.

(3) Continuity Property (CP): any lattice operation symbol are contin-
uous with respect to the Fräıssé pseudo-metric dK in [2, Definition
2.11].

(4) Near Amalgamation Property (NAP): for any lattices E =< e1, ...en >L,
F1 and F2 in K with lattice embeddings fi : E → Fi, and for all
ε > 0, there exists a G ∈ K and embeddings gi : Fi → G such that
∥g1 ◦ f1(ek)− g2 ◦ f2(ek)∥ < ε.

(5) Polish Property (PP): The Fräıssé pseudo-metric dK is separable and
complete in Kn (the K-structures generated by n many elements).

Now clearly the finitely generated sublattices of Lp(Lq) fulfill the first
two properties, and the third follows from the lattice and linear operations
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having moduli of continuity independent of lattice geometry. In addition, if
one can show that the class K has the NAP , has some separable X which is
universal for K, and its NAP amalgamate lattices can be chosen so that they
are closed under inductive limits, then one can prove that K also has the
Polish Property (a technique demonstrated in [14, Theorem 4.1] and more
generally described in Section 2.5 of [9]). The main difficulty in proving
that a class of lattices K is a Fräıssé class is in showing that it has the NAP.
However, thanks to Theorem 4.7, we have

Corollary 4.10. Kp,q has the NAP.

Theorem 4.7 implies an additional collection of AUH Banach lattices to
the currently known AUH Banach lattices: namely Lp for 1 ≤ p < ∞,the
Gurarij M-space M discovered in [5], and the Gurarij lattice discovered in
[14].

However, if one considers classes of finite dimensional Banach spaces with
Fräıssé limits using linear instead of lattice embeddings, the only known sep-
arable AUH Banach spaces are the Gurarij space and Lp for p ̸= 4, 6, 8, ...,
and it is currently unknown if there are other Banach spaces that are AUH
over its finite dimensional subspaces with linear embeddings. Certain combi-
nations of p and q are also ruled out for Lp(Lq) as a potential AUH candidate
as discussed in Problem 2.9 of [5]: in particular, when 1 ≤ p, q < 2, Lp(Lq)
cannot be linearly AUH.

5. Failure of homogeneity for p/q ∈ N

Recall that when E =< e1, ..., en >∈ BKp,q is embedded into Lp(Lq)
through f1, f2, then we can achieve almost commutativity for any p ̸= q.
However, the automorphism in Theorem 3.6 clearly preserves the equimea-
surability of the generating basic atoms of fi(E) as it fixes 1.

In this section, we show that the results of Section 4 do not hold when
p/q ∈ N. The first results in this section show that when some e ∈ Lp(Lq)+
is sufficiently close to 1, the automorphism originally used in the argument
of Proposition 2.5 sending 1 to e also perturbs selected functions piecewise
continuous on their support in a controlled way. Second, Theorem 4.1 does
not hold, and thus we cannot infer equimeasurability for arbitrary finite di-
mensional sublattices of Lp(Lq). Finally, we use these results to strengthen
the homogeneity property for any Lp(Lq) lattice assumed to be AUH, and
then show that when p/q ∈ N, Lp(Lq) does not fulfill this stronger homo-
geneity property, and thus cannot be AUH.

Lemma 5.1. Let 1 ≤ p ̸= q < ∞, and let < f1, ..., fn >⊆ Lp(Lq) be such
that

∑
fi = 1. Suppose also that for a.e. x, fk(x, ·) = 1[gk(x),gk+1(x)] where

each gk has finitely many discontinuities. Let ε > 0, and let e ∈ S(Lp(Lq))+
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fully support Lp(Lq). Consider

ϕ(f)(x, y) = f

(
Ñ [e](x)p,

ẽx(y)q
N q[e](x)

)
e(x, y)

which is the lattice isometry defined in Proposition 2.5 mapping 1 to e.
Then there exists δ such that if ∥1−e∥ < δ, then for each k, we have that

∥ϕ(fk)− fk∥ < ε.

Proof. We can assume ε < 1. Let K ⊆ [0, 1] be a closed set such that for
1 ≤ k ≤ n+ 1, gk|K is continuous and µ(K) > 1− ε. Pick δ′ < ε such that
for any x, x′ ∈ K, if |x − x′| < δ′, then |gk(x) − gk(x

′)| < ε/4. Now, let

δ < δ′2p be such that 1 − δ′

4 ≤ (1 − δ)p < (1 + δ)p < 1 + δ′

4 , and suppose

∥1 − e∥ < δ. Observe that for each x, we have ˜N [1− e](x)p < δ. For each
1 ≤ k ≤ n, let

f̃n(x, y) = f

(
Ñ [e](x)p,

ẽx(y)q
N q[e](x)

)
.

Observe that ∥f̃k−ϕ(fk)∥ < δ < ε/4, so it is enough to show that ∥f̃k− fk∥
is sufficiently small as well.

To this end, first note that since f is being composed with increasing con-

tinuous functions in both arguments, each f̃n(x, ·) is also the characteristic
function of an interval: indeed, we have piecewise continuous g̃1, ..., g̃n+1

with g̃k(x) := g(Ñ [e](x)p) and g̃n+1(x) = 1 such that for each k, f̃k(x, y) =
1[g̃k(x),g̃k+1(x)](y). Also observe that for M := {x ∈ K : N [e− 1](x) < δ}, we
have µ(M)) > 1− δ′ − ε. In addition, as

∥fk − f̃k∥p = ∥N [fk − f̃k]∥pp =
∫
µ(D(x))p dx,

Where Dk(x) = {y : fk(x, y) ̸= f̃k(x, y)}. The above set up, in combina-
tion with the triangle inequality properties of N , leads us to the following
inequalities:

• For all 0 ≤ x ≤ 1, |Ñ [e](x)p − x| < δ.
• For all x ∈M , |N [e](x)− 1| < δ.

• For all x ∈M and 0 ≤ y ≤ 1, |ẽx(y)q − y| < δ′

2 .

• For all x ∈M and 0 ≤ y ≤ 1, if y′ :=
ẽx(y)q
Nq [e](x) , then |y′− ex(y)q| < δ′

2

(which implies with the above that |y − y′| < δ′).

We now show that the above implies that Dk(x) < 2ε. Observe first

that for all x ∈ M , if fk(x, y) ̸= f̃k(x, y) it must be because, but y′ /∈
[g̃k(x), g̃k+1(x)], or vice versa. In either case, it can be shown that either
|y−gk(x)| < δ+ ε

4 or |y−gk+1(x)| < δ+ ε
4 . Suppose y ∈ [gk(x), gk+1(x)] and

y′ < g̃k(x) (a similar proof will work in the case that y′ > g̃k+1(x). Then
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since y > gk(x), |y − y′| ≤ δ′, and |gk(x)− g̃k(x)| < ε
4 ,

0 ≤ y − gk(x) = (y − y′) + (y′ − g̃k(x)) + (g̃k(x)− gk(x)) < δ +
ε

4
.

It follows then that accounting for both ends of the interval [gk(x), gk+1(x)]
and for x ∈M , we have Dk(x) < 2ε. Resultantly,

∥fk − f̃k∥p =
∫
M
µ(D(x))p dx+

∫
Mc

µ(D(x))p dx < (2ε)p + δp < 3εp,

which can be made arbitrarily small.
□

Theorem 5.2. Let 1 ≤ p ̸= q < ∞ and suppose Lp(Lq) is AUH over its
finite dimensional sublattices. Let fi : E → Lp(Lq) be lattice embeddings
with E =< e1, ..., en > such that fi(x) = 1 for some x ∈ E. Then for all
ε > 0, there exists an automorphism ϕ fixing 1 such that ∥ϕf1 − f2∥ < ε.

Proof. Assume the above, and pick E′ =< e′1, ..., e
′
m >⊆ Lp(Lq), where

e′k = ak · 1Ak×Bk
with Ak and Bk intervals such that

∑
k 1Ak×Bk

= 1 and
for each ek there is xk ∈ S(E′)+ such that ∥xk − f2(ek)∥ < ε

4n .

Since Lp(Lq) is AUH, there exists an automorphism ψ such that ∥ψf1 −
f2∥ < δ, where δ satisfies the conditions for ε

4mn and each of the e′k’s in E
′

in Lemma 5.1. Now pick the automorphism ϕ′ over Lp(Lq) mapping 1 to
ψf1(x) as defined in Lemma 5.1. It follows that for each e′k, ∥ϕ′(e′k)− e′k∥ <
ε

4mn , so ∥ϕ′(xk)− xk∥ < ε
4n . Thus for each ek ∈ E,

∥ϕ′f2(ek)− ψf1(ek)∥ ≤∥ϕ′(f2(ek)− xk)∥+ ∥ϕ′(xk)− xk∥

+∥xk − f2(ek)∥+ ∥f2(ek)− ψf1(ek)∥ <
ε

n
,

Now let ϕ = ϕ′−1 ◦ ψ to obtain the desired automorphism; then ∥ϕf1 −
f2∥ < ε.

□

The above can be used to show that if Lp(Lq) is AUH and fi(E) contains 1
for i = 1, 2, then we can induce almost commutativity with automorphisms
fixing 1 as well. This will allow us to reduce possible automorphisms over
Lp(Lq) to those that in particular fix 1. The importance of this result is
that these particular homomorphisms fixing 1 must always preserve base-
equimeasurability for characteristic functions, as shown in Proposition 3.1.
Thus a natural approach in disproving that Lp(Lq) is AUH would involve
finding sublattices containing 1 which are lattice isometric but whose gener-
ating elements are not base-equimeasurable. The following results do exactly
that:

Lemma 5.3. Lemma 4.2 fails when r := p/q ∈ N. In particular, there
exists a non-zero measure ν := α− β, with α and β positive measures such
that for all polynomials P of degree j ≤ r,
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∫ 1

0
P (x) dν(x) = 0.

Remark 5.4. It is already known that a counter-example exists for Lr(0,∞)
for all r ∈ N, with

dν(x) = e−u
1
4 sin(u

1
4 ) du

(see [12] and [8] for more details).

.
Here we provide another example over the unit interval:

Proof. Fix such an r, and define a polynomial g(x) of degree r + 1 with

g(x) =
∑r+1

0 aix
i such that for all 0 ≤ j ≤ r,

∫ 1
0 x

jg(x) dx = 0. This can be
done by finding a non-trivial a0, ..., ar+1 in the null set of the (n+1)×(n+2)
size matrix A with A(i, j) = 1

i+j+1 . Then let dν(x) = g(x) dx. Let α = ν+
and β = ν−. Clearly α and β are finite positive Borel measures, but since
g ̸= 0, α ̸= β. □

Lemma 5.5. Let p/q ∈ N. Then there exists a two dimensional lattice
E =< e1, e2 > and lattice embeddings fi : E → Lp(Lq) with 1 ∈ E such that
g1(e) and g2(e) are not base-equimeasurable.

Proof. Let f(x) be a polynomial of degree at least r+1 as defined in Lemma

5.3 such that for all 0 ≤ k ≤ r,
∫ 1
0 t

kf(t) dt = 0, and
∫ 1
0 |f(x)| dx = 1. Let

h1(x) =
1
2+f(x)+, and let h2(x) =

1
2+f(x)−. Note that each hi(x) > 0, and

furthermore that
∫ 1
0 hi(t) dt = 1. Additionally, each mapHi(x) =

∫ x
0 hi(t) dt

is strictly increasing with Hi(0) = 0 and Hi(1) = 1. Now we will construct
characteristic functions f ij ∈ Lp(Lq) such that the linear map f1j 7→ f2j in-

duces an isometry, but N f1 and f2 are not base-equimeasurable. From there,

we let ej =
f1j
∥f ij∥

, and let gi be the lattice isometry induced by gi(ej) =
f ij

∥f ij∥
,

To this end, let

F i1(x) := H−1
i (x), and F i2(x) := 1− F i1(x).

Observe that F 1
1 (x) ̸= F 2

1 (x). Indeed, one can show that the associated
push forwards dF i1#µ for each F i1 have the corresponding equivalence:

dF i1#µ(x) = hi(x) dx

So (F 1
1 , F

1
2 ) and (F 2

1 , F
2
2 ) are not equimeasurable. However, For 0 ≤ j ≤ r,

ujhi(u) du = uj dF i1#(u) = F i1(x)
j dx, so it follows from the construction

of the hi’s that ∫ 1

0
F 1
1 (x)

j dx =

∫ 1

0
F 2
1 (x)

j dx.

Thus for any v1, v2 > 0, since F i1 and F i2 are both positive, we have
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∫ 1

0
|v1F 1

1 (x) + v2F
1
2 (x)|r dx =

∫ 1

0
((v1 − v2)F

1
1 (x) + v2)

r dx

=
r∑
0

(
r

j

)
(v1 − v2)

jvr−j2

∫ 1

0
F 1
1 (x)

j dx =

∫ 1

0
|v1F 2

1 (x) + v2F
2
2 (x)|r dx

To conclude the proof, let f i1(x, y) = 1[0,F i
1(x)]

(y), and let f i2 = 1 − f i1.

Clearly N [f ij ] = F ij . □

Theorem 5.6. If p/q ∈ N and p ̸= q, then Lp(Lq) is not AUH for the class
of its finite dimensional sublattices.

Proof. Fix p/q ∈ N, and let E be the 2-dimensional lattice generated in
Lemma 5.5, with fi : E → Lp(Lq) embeddings mapping to copies of E =<
e1, e2 > such that f1(e) and f2(e) are not base-equimeasurable. In addition,
by assumption 1 ∈ E. For notational ease, let F ij = N [fi(ej)].

Suppose for the sake of contradiction that Lp(Lq) is AUH. Pick some
measurable C ⊆ [0, 1]2 and ε > 0 such that

∗ F2
#µ(C) > F1

#µ(C + ε) + ε,

where

C + ε = {t ∈ [0, 1]2 : ∥t− s∥∞ < ε for some s ∈ C}.
By Theorem 5.2, there is some lattice automorphism ϕ : Lp(Lq) → Lp(Lq)
fixing 1 such that ∥ϕ ◦ f1− f2∥ < ε2. Let ϕF ij = N [ϕfi(ej)]. By Proposition
3.1, ϕ preserves base-equimeasurability, so for any measurable B,

ϕF1
#µ(B) = F1

#µ(B).

By the properties of N , we also have ∥ϕF 1
j − F 2

j ∥p ≤ ∥ϕf1(ej)− f2(ej)∥. It
also follows that

µ(t : ∥ϕF1(t)− F2(t)∥∞ > ε) < ε,

so ϕF1
#µ(C + ε)+ ε > F2

#µ(C), but this contradicts the assumption (*). So

Theorem 5.2 cannot apply, implying that Lp(Lq) is not AUH as desired. □

Remark 5.7. For p/q ∈ N, Lp(Lq) is the unique lattice that is separably
AUH over finitely generated BLpLq spaces, since up to isometry it is the
unique doubly atomless BLpLq space. In light of Theorem 5.6, this implies
that the class of finitely generated sublattices of Lp(Lq) is not a Fräıssé class
as defined in [2], as Lp(Lq) is the only possible candidate as a Fräıssé limit.

In particular, LpLq lacks the NAP. Indeed, otherwise, one can use that
NAP with BLpLq amalgamate lattices and [7, Proposition 2.8] to situate a
dK-Cauchy sequence into a Cauchy-sequence of generating elements in an
ambient separable BLpLq lattice. Thus Kp,q would also have the Polish
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Property, implying that Kp,q is a Fräıssé class. Since the only possible
candidate Fräıssé limit space is Lp(Lq) itself, this would contradict Theorem
5.6.
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[9] M. Lupini. Fräıssé limits in functional analysis. Adv. Math., 338:93–174, 2018.

[10] W. Lusky. Some consequences of Rudin’s paper” Lp-isometries and equimeasurabil-
ity”. Indiana University Mathematics Journal, 27(5):859–866, 1978.

[11] Y. Raynaud. Sur les sous-espaces de Lp(Lq), Séminaire d’Analyse fonctionnelle paris
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