RENORMING AM-SPACES
T. OIKHBERG AND M.A. TURSI

ABSTRACT. We prove that any separable AM-space X has an equivalent
lattice norm for which no non-trivial surjective lattice isometries exist.
Moreover, if X has no more than one atom, then this new norm may be
an AM-norm. As our main tool, we introduce and investigate the class
of so called Benyamini spaces, which “approximate” general AM-spaces.

1. INTRODUCTION

The question of renormings has been extensively studied in the Banach space
literature. The goal is to equip a prescribed Banach space with an equivalent
norm in a way that alters its isometric properties in a certain desirable way
(the isomorphic properties meanwhile remain the same). Many results of
this type appear in [4]; for more modern treatment see [5] or [6].

We are interested in producing a renorming with a prescribed group of isome-
tries (throughout this paper, all isometries are assumed to be linear and sur-
jective unless specified otherwise). One of the first results appeared in [2];
there, it was shown that any separable real Banach space can equipped with
an equivalent norm for which there are only two isometries — the identity and
its opposite. The separability assumption was later removed in [I0]. More
recent papers [7], [§], [9] deal with renorming a separable Banach space in a
way that produces a prescribed group of isometries.

In this work, we consider lattice renormings of separable AM-spaces. Re-
call that an AM-space is a Banach lattice in which the equality ||z V y| =
max{ ||z, ||y||} for any positive x and y; a lattice norm with this property is
called an AM-norm. We also restrict oursleves to lattice isometries — that
is, surjective (linear) isometries which preserve lattice operations. Our main
result is:

Theorem 1.1. Suppose (X, ||-||) is a separable AM-space, and ¢ > 1. Then

X can be equipped with an equivalent lattice norm |||-|| so that || - || < ||| <
c|l-1l, and the identity map is the only lattice isometry on (X.||-|). If X has
no more than one atom, then ||-|| can be chosen to be an AM-norm.

The restriction on the number of atoms is essential; see Remark
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The proof of Theorem [I.1] proceeds in two steps. In Section[2] we introduce a
new class of AM-spaces, which we call “Benyamini spaces,” for their original
discoverer [3]. We establish that any separable AM-space can be transformed
into a Benyamini space with arbitrarily small distortion; this result may be
interesting in its own right. In Section [3] we renorm a Benyamini space,
eliminating all non-trivial isometries (the new norm may cease to be an
AM-norm if more than one atom is present). The proof of Theorem |[I.1
then follows by combining Proposition 2.3 and Theorem [3.1]

Throughout this paper, we use the standard functional analysis facts and
notation. For more detail, the reader is referred to e.g. [11] and [12]. All
spaces are assumed to be separable, and the field of scalars is that of real
numbers. For a normed space Y, we use the notation B(Y) = {y € Y :
lyll < 1}. If Y is an ordered space and A C Y, we denote by A, the
positive part of A — that is, {a € A:a > 0}.

2. BENYAMINI SPACES

Here we investigate a class of AM-spaces — the Benyamini spaces. Such
spaces are flexible: any separable AM-space can be transformed into a space
of this form (Proposition . On the other hand, Benyamini spaces can
be easily analyzed, since they have a concrete representation, similar to a
C(K) space. In particular, we describe atoms in, and duals of, such spaces

in Subsections 2.3 and respectively.

2.1. Definition and basic properties.

Definition 2.1. We say that a Banach lattice X is a C-Benyamini space
(the constant C > 1 will often be omitted) if it is a sublattice of C(K),
where:

(1) K is the one point compactification of the union of mutually disjoint
compact sets K, (K = (U,K,)U {oco}).

(2) X C Co(K) - that is, any v € X wvanishes at oo.

(8) X separates points for each K,, (that is, for allt,s € K, there exists
x € X such that x(t) # x(s)).

(4) If t € Ky, s € Ky, and for all v € X, x(t) = Ax(s) for some fived
A, then A =C"™ ™,

Note that, if X is separable, then each K, is metrizable (due to (3)). Con-
sequently, K is metrizable.

We begin by establishing some properties of Benyamini spaces.

Lemma 2.2. Let K, C, and X C Cy(K) be as above. For n # m, define
D(m,n) by

D(m,n) = {t € K, : 3s € K, such that Vz € X,z(t) = C" ™x(s)}.

Then D(n,m) is closed and homeomorphic to D(m,n).
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Proof. Define ¢y, : D(m,n) — D(n,m) by setting ¢, (t) to be the unique
s € D(n,m) with the property that z(t) = C" ™x(s) for any x € X.
Because X separates points for each K, ¢, is well defined and injective.
By definition of D(m,n), it is bijective, and ¢y, = ¢;.1,. To show continuity,
suppose t, — t € D(m,n) with t; € D(m,n). Suppose there exists a
subsequence s; = ¢mn(tr;) — 5 # Gmn(t) (we can limit ourselves to such a
case since K, is compact). Then for all x € X,

z(s) =limz(s;) = li}rn C™ "a(ty;) = C" "a(t) = 2(Pmn(t)),

which is a contradiction, since X separates points. To prove that D(m,n)
is closed, suppose t; — t. Then for all z € X,

x(t) = lilglx(tk) = C'"_mlilgn Z(Pmn (tr))-

By compactness, we assume that ¢, (tx) — s € K,. Hence for all x €
X,x(t) = C""™x(s), so s € D(m,n). O

The importance of Benyamini spaces stems from the fact that any separable
AM-space can be “approximated” by a Benyamini space.

Proposition 2.3. If X is a separable AM-space, then for every C' > 1 there
exists a Benyamini space X' and a surjective lattice isomorphism ® : X —
X' so that for all x € X, ||z|| < ||®(X)|| < C||=]-

The proof below is similar to that of [3, Lemma 1].

Proof. We can assume that X C C(H) for some Hausdorff compact H.
First, as in [3], we consider the set F' := Nyexa~1(0). If F # 0, identify F
with a single point z by passing from K to K/F. Let x, be a dense sequence
in B(X);. Let ¢ = (C —1)Y.° | C"x,. Clearly ¢ belongs to X.

Let H, = {t € H:C™ < () < C™) If infintely many H,’s are
non-empty, let H, be disjoint copies of Hy, and let H = (U, Hy) U{oo} be
the one point ¢ compactlﬁcatlon of U H,. Otherwise, let H = U, H,. Define

the map W : H-—H sending H, to H, and oo to z. Note that if F is empty,
then ¢(t) > 0 for all ¢t € K, and since 1) itself is continuous, its image is
compact and so must be bounded below; then H,, = () for n large enough.
Otherwise, ¢ vanishes only at z. In either case, ¥ is a continuous surjection
from H onto H, which implies that C(H) embeds into C'(H) isometrically
via the map = — Uz :=xz0U.

Now define a lattice isomorphism U : Co(H) — Co(H) by setting, for z €

1-n

Co(HD), [Us](00) = 0, and [Ua](t) = Sttt
()(t)
|z|| < C|lz||. Then T = U o ¥ is a lattice homomorphism, and ¥V = T'(X)
is a sublattice of Co(H). We claim that, if ¢ € H,, and s € H, are such

Observe that [|[Uz| <
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that y(t) = A\y(s) for any y € Y’, then A = C" ™. Indeed, y = Tz for some
rz € X, so

LUl CUa(E() U)o 2(E0) G(E()

y(s) p(e(t)  Ctra(¥(s)) z(¥(s)) »(¥()

From this, it follows that z(¥(t))/z(¥(s)) is a constant on X . Either U(¢) =

U(s), or t' = ¥(t) and s’ = ¥(s) are “defining points” for X C C(H) — that
is, z(t')/x(s") is independent of z € X. Either way, A = C" ™.

Y
¥

Finally, we transform the sets ﬁn into sets K, whose points are separated
by X’. By the preceding paragraph, if ¢, s € H, are such that y(t) = \y(s)
for any y € Y, then A = 1. Define an equivalence relation on H: t~s
if for all y € Y, y(s) = y(t). Clearly the equivalence classes are closed,
hence each quotient space K, := fIn / ~ is compact. Identify H / ~ with
K = (UpK;,)U{oo}, which is the one-point compactification of U, K,,. Define
O Y — Co(K) by setting, for y € Y, [®y|([t]) = y(t), where [t] is the
equivalence class of ¢. Clearly ® is a lattice isometry. X' = ®(Y) is a
Benyamini space, and ® o T : X — X' is a lattice isomorphism with desired
properties. ([

Remark 2.4. The Benyamini space X', constructed from X using Proposi-
tion [2:3] may have a different group of isometries. We do not know whether
the Benyamini space can be constructed while preserving the group of isome-
tries (or even a subgroup thereof).

2.2. Extension of functions in Benyamini spaces. We say that a func-
tion x € C(Kp U...UKy) is consistent if z(s) = C" " x(pmn(s)) when-
ever s € D(m,n), with M < n,m < N. We shall say that a family
of functions z, € C(K,) (M < n < N) is consistent if the function
x € C(Kp U...UKy), defined via x|k, = x,, is consistent.

Proposition 2.5. (1) If L< N, and x € C(K U...UKy) is a consistent
function, then there exists @ € X so that T|k,u. uky = *, and, for j ¢
{L,...,N}, Supg;, |Z| < maxp<j<y C"7 SUpg, |z

(2) If, furthermore, y € X4 is such that 0 <z <y on KpU...UKy, then
T can be selected in such a way that, in addition, 0 < & < y.

Remark 2.6. In a similar fashion, one can show that if y,z € X are such
that z <z <yon Kj)U...UKy, then T can also be selected in such a way
that z <z <wy.

The proof of Proposition [2.5]is obtained by combining Lemmas [2.7] and
First we deal with “downward” extensions.

Lemma 2.7. (1) If x € C(K1 U ... U Ky) is a consistent function, then
there exists & € X so that T|k,u. uKky = %, and, for j > N, Supg; |z| <

maxi<j<y C" supy, |z|.
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(2) 1If, furthermore, y € X is such that 0 < x <y on K1 U...U Ky, then
T can be selected in such a way that, in addition, 0 < T < y.

Proof. (1) We define Z recursively. Suppose Z|x,u...urk,,_,, With M —1 > N,
has already been defined in such a way that supg, |Z| < maxi<i<ny C' I supy,
whenever N < j < M. Define now Z on K. If t € D(M, j) for some j < M,
set z(t) = CI~Mz(¢p;(t)). Note that x is well-defined on U;<prD(M, j): if
t € D(M,7) N D(M,i), then CT=Ma(¢p;(t)) = C"Ma(ppr(t)). Also, for
such t, |z(t)] < maxi<i<y C*M supg, |z|.

Moreover, Z is continuous on the closed set D(M, j) for every j < M, and
thus also on Uj<cpD(M,j). Extend Z to a continuous function on Kjps
without increasing the sup-norm.

Finally, set Z(co) = 0. The function Z thusly defined belongs to X. In-
deed, it is continuous on each of the sets Ky, and also at oo, given that
supg; |[Z| < const-C™7. Finally, if t € D(n, m), then Z(t) = C™"Z(¢pm (1))

(2) Modify the recursive process from part (1). Suppose Z|x,u. UKy _1>
where M — 1 > N, has already been defined in such a way that 0 < & <
YlKyu. UKy, on KjU. . UKy and SUpf; & < Maxi<i<n C* T supg, ©
whenever N < j < M. Define now Z on Ky;. If t € D(M,j) for some
J < M, set z(t) = CI Ma(pp;(t)). As before, observe that x is well-defined
on UjcprD(M, j). Clearly, for t € D(M, j),

0<z(t) <yt dz(t) < oM )
<z(t) < y(t), an $()_11§nifgv S;px

k3

Also, Z|y,_,, () is continuous. Therefore, we can find u € C(Kp) so that

suplul=  sup || < max C"Msup|z|.
Ky Uj<mD(M.j5) 1si=N Ki
To define & on Ky, set & =u A y. (|

We shall use the notation K| = K, \(Up<nD(n,m)), and K’ = U, K], (note
that these sets are open).

In a manner similar to the preceding lemma, one can prove:

Lemma 2.8. Suppose m <n, t € K}, s € K}, and U C K},, V € K], are
disjoint open sets with the property thatt € U CU C K|, and s €V CV C

K/ . Then for «, € [0,00), there exists x € X4 so that:

(1) For j <m, x|k; = 0.

(2) z(t) =a, z(s)=F,z<aonU, andz < onV.
(3) If m < n, then x|k, \v = 0.

(4) If m <mn, then form < j <n, 0 < x|k, <C"Ja.
(5) On K,,, 0 <z < C™ "aV}p.

(6) For j>n, 0 <z|g, < (C™Ta)V (C"3).

z|
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Proof. We shall consider the case of m < n (that of m = n is handled
similarly). In light of Lemma it suffices to construct a consistent family
of functions x; € C(Kj), with j < n, satisfying the properties listed above.
For j < m, simply set x; = 0. Define z,,, € C(K,,)+ which vanishes outside
of U and satisfies 0 < z < a = z(t).

Use Lemma [2.7| to find x; € C(Kj) so that the family (z;);<, is consistent
and z; < C™ Va.

Define z,, € C(K,,) in such a way that:

(1) 2 =00n 9V, and 0 <z, < B = my,(s) on V.
(2) xn(t) = C?7"xj(¢n;(t)) whenever t € D(n,j) for some j < n.

Such a function ,, exists, since V is disjoint from U;<, D(n, j). Furthermore,
the family (x;),<y is consistent. To define z; for j > n, again invoke Lemma
[l

Next we consider “upward” extensions.

Lemma 2.9. (1) If L < N, and x € C(Kp U ...U Ky) is a consis-
tent function, then there exists a consistent & € C(K; U .U Ky) so that
Tk u.uky =, and for j < L, SUpg, 7] < maxz<;<n C'/ supg, |z].

(2) 1If, furthermore, y € Xy is such that 0 <z <y on Ky U...U Ky, then
Z can be selected in such a way that, in addition, 0 < I < y.

Proof. We only prove (1), as (2) is handled similarly (compare with the
proof of Lemma .

Define & recursively. Suppose |, ,u..uky (M + 1 < L) has already
been defined in such a way that supg, |Z| < maxp<i<n C'J supg., || when-
ever M < j < N. Now define z on K. If t € D(M,j) for some
jeE{M+1,...,N}, set 2(t) = CI~Ma(¢pr;(t)). Note that z is well-defined
on Un<jcnD(M,j): if t € D(M,j) N D(M,i), then C7Mz(¢prr;(t) =
C Mz (dari(t)). Also, for such ¢, |z(t)] < maxi<;<y O M supg, |z|.

As i’|UM<]~§ND(M,j) defined above is continuous, we can extend it to the
whole K, without increasing the sup-norm. O

2.3. Atoms in a Benyamini space.

Definition 2.10. A point k € K’ is called hereditarily isolated if it is an
isolated point of K|, for some n € N, and ¢ (k) is isolated in K, whenever
k € D(n,m).

For a point k like this, we can define a function ; € X by setting 0 (k) =
1, Ox(Pnm(k)) = C™™™ whenever k € D(n,m), and 6i(t) = 0 otherwise.
Clearly 6y, is a normalized atom in X. Our next result claims that all atoms
in X are of this form.
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Proposition 2.11. If x € X is a normalized atom, then x = 0 for some
hereditarily isolated point k.

Proof. Suppose x € X is a normalized atom. Find k € K/, such that z(k) =
1. We now prove that k£ is a hereditarily isolated point and that x = 0.
In particular, we must show that if & € D(n,m), then ¢y, (z) is isolated in
K, (note that here, m > n necessarily).

Suppose, for the sake of contradiction, that k., = ¢nm (k) is not isolated in
K,, for some m. Find the smallest such m. Find distinct a1,a2 € K,, so
that z(a1),z(a2) > 1/2. Find y € C(K,,) so that 0 <y < z|k,,, yi(a1) = %,
and y(a2) = 0. By Proposition there exists § € [0,z] C X such that
J|k,, = y. By our choice of y, § cannot be a scalar multiple of . Thus x is
not an atom, which is the desired contradiction. O

2.4. The dual of a Benyamini space.

Lemma 2.12. Let X and K’ be as above. Then X* is lattice isometric to
M(K").

Proof. Any measure on K’ determines a linear functional on X; this gives
rise to a contraction i : M(K') — X*. We prove that i is a surjective
isometry by showing that any z* € X* can be represented by p € M(K')
with [|p]| < ||z*||. By the Hahn-Banach Theorem, z* extends to a functional
on C(K) of the same norm; the latter is implemented by a measure pu €
M(K), with ||u|| = ||z*||]. By removing a point mass at co, we can and do
assume that y lives on Uy, K.

We claim that p vanishes on K\K’. Indeed, otherwise find the smallest
value of n for which p does not vanish on K,\K); then M’Uj@D(nJ) # 0.
Find the smallest j so that u|p, ;) # 0. Then the measure

= 1= 1] iy T €U gy © Gin

implements the same functional z*; here, for z € C(K), we define [p| (n.j)°

Bjn] (x) tobe p| o o (] sy 00ns) - Note that 4 (E) = u(E)+CT " u(¢j(E))

for E C D(j,n), p/(E) =0 for E C D(n,j), and p/(E) = p(E) if E is dis-

joint from D(n,j) U D(j,n). Furthermore, p'|,, = p|x,, for m ¢ {j,n},

Wk, = 1k, \D(n,j), and /~L/|K]~ = ulk; + C’J_”MD(TLJ) © @jn. It follows that
11k Il = Nl | = Nl Dy I

while

' 1, | < il |+ CT el
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Therefore,

1l =D Ll = e Ll T L Y
i i¢{in}

< (G =Dl + D el < Y- g | = ]l
% 7

a contradiction.

It is clear that the map i is positive (a positive measure generates a positive
functional). We now show that i is bipositive: if u € M(K') is not a positive
measure, then the corresponding functional is not positive either. We can
write = (fn), with () concentrated on K. Note that ||u| = >, ||1m]]-
Find N € N so that u, > 0 for n < N, but uy is not positive. By
the regularity of the measure py, we can find a positive zny € C(Ky),
vanishing on Uj-nyD(N,j), so that uny(zn) < 0. By scaling, we can and
do assume that ||[zn|lcc = 1. Let 6 = —pun(xn)/3. Find M > N so that
> ot CN sl < 6.

For j < N, let z; be the zero function on K;. For N < j < M, find an open
set U; C K containing U;<; D(j,4) with ||u;|u,|| < 6/M. Now use Lemma
to define, recursively, a consistent family of functions x; (j > N) so that
|z;]| < CN=9 and z; vanishes outside of U; for N < j < M. By our choice
of Uj, we have |u;(z;)| < 6CN=3/M for N < j < M; for j > M, we have
| (x5)] < 6CN7I|| ;]| Merge all the z;’s into a function z € X. Then

M
.0 .
p(x) < pn(en) + O Iz < =36+ Y CV SYal >Nyl
J>N j=N+1 i>M

5 )

<36+ (M~N+1)5+ > CV |yl < =35+ 646 = =4,

i>M
which shows that the linear functional determined by p is not positive.

We have established that i: M(K') — X is a bipositive surjective isometry.
By [1], i is a lattice isometry. O

We shall denote by A; the set of normalized atoms of X*. By Lemma[2.12]
X* = M(K'), hence Ay = {6; : t € K'} C B(X*);. Below we show that
A; (equipped with the weak* topology inherited from X*) is topologically
homeomorphic to K'.

Lemma 2.13. The map j: K' — Ay : t — 0; is a homeomorphism.

Proof. To establish the continuity of j, suppose the net t, converges to ¢ in
K'. By continuity, 0y, (x) = z(ta) — z(t) = 0;(z) for any = € X, hence
dt,, — O¢ in the weak® topology.

For the continuity of j=!, consider a net (¢,) C A; so that &, — & € A
in the weak* topology — that is, x(t,) — x(t) for any x € X. By the
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compactness of K, it suffices to show that the limit of any convergent subnet
of (tq) is t.

Suppose (tj) is a subnet of (t,), which converges to s € K. Then for any
z € X, we have z(s) = limg () = z(t). As x(t) is not always 0, part (2)
of Definition [2.1| implies s # co. Further, z(t) = z(s) for any « € X, hence
parts (3) and (4) of Definition [2.1| show that ¢ = s.

O

3. RENORMINGS OF BENYAMINI SPACES

Theorem 3.1. Suppose (X, ||-||) is a Benyamini space. Then, for anyc > 1,

X can be equipped with an equivalent norm ||-|| so that ||-|| < ||| < |||, so
that the identity is the only lattice isometry on (X, |-|). If X has no more
than one atom, then ||-|| can be selected to be an AM-norm.

Remark 3.2. The restriction on the number of atoms is essential here; see
Remark 3.8

The rest of this section is devoted to proving Theorem (3.1

Assume that X is a C-Benyamini space (C' < 2) and that ¢ < V/C. Let A
and B be the sets of all n € N for which K], is infinite, resp. finite and non-
empty. For n € B, write K|, = {tin,...,lp,n}. For n € A, find a sequence
t1n, ton, - . . of distinct elements of K, which is dense in K),. Find a family
(Min)neau C (1,¢) of distinct numbers so that: (i) for n € A, ¢ > Ay, >
Xop > ..., and lim; Ay, = 1; (i) for n € B, ¢ > Ay > ... > Xy, > 1. For
each t € K', let p(t) = iy, if t = t;,, for some 4 and n, p(t) = 1 otherwise.
Denote the normalized atoms of X by (6;);cr, where the set I is countable.
By Proposition each 6; corresponds with a hereditarily isolated point
a; € K'. Furthermore, for each i, there exists a canonical band projection
P; onto span[f;]. Then Pz = z(a;)0;.

Our definition of ||-|| would depend on the cardinality of I.

|I| = 0. For z € X set

(3.1) llzlll = sup p(t)|2(t)].
teK’

|I| = 1. Write I = {1}; represent X as X; @ R, where X; = ker P, is a
C-Benyamini space (with the underlying space obtained by removing from
K all the points ¢pm(a1), when a; € K,, and m > n). Let |||+ be the norm
defined on X7 using (with some collection (¢,;)). Let

(3-2) Il = max {1 — Pzl | Pr[|}.

[I| > 1. Write I = {1,...,m} (2<m < oc) or I =N. Let P = {(4,5) € I*:
i < j}, and let 7 : P — N be an injection. For (i,5) € P, let || - ||;; be the
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norm on R? whose unit ball is an octagon with vertices

(i <1—C(27r;’_j)1+1)>,i1> and (ﬂ,i(l—%))

We mention some properties of the norms || - ||; j, to be used in the sequel.

NI || floo <1+ lleg < cll - [loo-

N2 The formal identity (R?, ||-[|i; j,) — (R, [|*|lip.jo) (With the first vector of
the canonical basis mapping to the first, and the second — to the second)
is an isometry iff 41 = i3 and j; = jo. This follows from a comparison of
extreme points.

N3 For v > 1and k € I, there exists L = L(k,v) > k so that ||-||z; <7 [loc
for j > L.

N4 For v > 1, there exists M = M(7y) so that || - |l;; < 7| - ||oc Whenever
j>i> M.

N5 If || V [8] = 1 and |a| A |B] < 1/c, then ||(«, B)|i; = 1.

We let

(3:3)  llall = max { sup p(®)|e(®)], sup || (u(ai)e(a), plag)e(a)],,; }-

teK’ (i,5)eP ’
Clearly, we always have || || < ||| < ¢?||-|| (in fact, if |I| < 1, we can replace
c® by ¢). Tt is also clear that for |I| < 1, ||-|| is an AM-norm. To show that
the only lattice isometry on (X, |-||) is the trivial one, we need a series of
lemmas. As the proof for |I| =1 follows immediately from that for |I| =0,
we shall only consider the cases of I = () and |I| > 2.

First we establish the norms of point masses. Let 0y = u(£)d;.

Lemma 3.3. For anyt € K',

-1

)

Proof. For x € X and t € K', we clearly have |z| > u(t)|x(t)| = |(§t($)
hence ‘H&

Fix t € K" and v > 1. We need to find z € X such that z(¢t) = 1/u(t) and
[lz]| < . To this end, find n so that ¢t € K],. Next, construct a finite set
V C K], consisting of “potentially troublemaking” points. If |I| = (), let

V= {s €K, :pu(s)>yul)}
If |I| > 2 and t is not hereditarily isolated, let
V= {s € K} uls) > vt} Udas € Ky i < M(9)},
with M (v) as in [N4].
If |I| > 2 and ¢ is hereditarily isolated, then t = a, for some k. Let
V={seK,:p(s)>yu)}U{ac K i< M)V Lk )N\ ar},
where L(k,~) comes from property [N3].

H < 1. It remains to prove the opposite inequality.
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The set V is finite and does not contain ¢. Find an open set U C K, \V
containing t. Find z € C(K,) such that = vanishes outside of U and 0 <
x < 1/u(t) = z(t). Define x to be 0 on K, for m < n. This function is
consistent, so by Proposition there exists £ € X so that Z|x,u. Uk, ==
and [|Z|| = 1/\in.-

It remains to show that [|Z]| < ~?. This will follow if we establish that
(3.4) u(s)|z(s)| < v for any s € K,

and (in the case of \I| > 2)

(3.5) | (1(a ,w(aj)Z(aj) H < ~% for any i < j.

Note that, due to our construction of #, Z(s) = 0 if s € K], with m < n.
For s € K], we have Z(s) = 0 for s ¢ U, while for s € U, u(s) < yu(t),
so u(s)|Z(s)] < v. Finally, if s € K/, for some m > n, we have Z(s) <
C™™/pu(t), hence u(s)|Z(s)| < ¢/C < 1 <. This establishes (3.4).

To handle (3.5), note that if a; € Upen K}, U (K,,\U), then Z(a;) = 0, and
therefore,

e s 11(ag)@(ajz) Hz] = [0, n(a;)i(a; )Hw = p(az)@(aj)-

The right hand side cannot exceed 7, as discussed in the paragraph relating
to (3.4). The same conclusion holds if a; € Upepn K, U (K] \U).

If ai, a; € Upsn Ky, then &(ai), #(a;) < 1/(u(t)C), hence
2
) C
H(u(ai)x(ai),ﬂ(%) aj )H ij = m <1

Now consider the case of a; € U, a; € Uy, K. In this situation, p(a;)z(a;) <
¢/C < ¢72, hence, by [N5],

(1) i(as), mulag)E(ag)) | ; < -
The same conclusion holds if a; € U, a; € Upsp K.
Finally, if a;, aj € U, then p(a;), p(a;) < yu(t). By the choice of U,

[ (u(a s 1(ay)T(a; )H” < || (u(ai)z(ai), u(a;)z(a; N |lse <%
The same conclusion holds if the roles of a; and a; are reversed. We have
now established (3.5)). O
Now suppose T is a surjective lattice isometry on (X, ||-]||). Note first that

T fixes the atoms of X:
Lemma 3.4. For anyi € I, TO; = 0;.

Proof. This is obvious if |[I| < 1. For |[I| > 2, let e; = 6;/u(a;) be the
normalized atoms. By (3.3)), for any «, 5 € R, we have

llece; + Bej|| = H(O" ﬁ)Hz]
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If T'maps e; and e; to e; and ey respectively, then

[, B)||;; = II(ev, B, for any o, B,

which, in light of Property [N2], implies i = k, j = /. O

Now observe that T* is interval preserving [I2, Theorem 1.4.19], hence it
maps atoms of X* to atoms. The atoms in X* are characterized by Propo-
sition By Lemma the set of normalized atoms of (X*, ||-||) (which
we shall denote by A) coincides with {St te K’ }

Thus, by Lemma there exists a bijection ¢ : K — K’ so that T*6, =
dy(t)- We shall show that ¢(t) = ¢ is the identity map. In fact, Lemma
already shows that ¢ (t) =t if ¢ is a hereditarily isolated point.

To proceed further, in the next few lemmas we examine weak™ convergence
in A. For convenience, we denote by ¢y, the identity map on D(n,n) := K,.

Lemma 3.5. Suppose m,n € N, t € K],, and the sequence (t;) C K, \{t}
converges to s. Then the following are equivalent:

(1) m >n, and s = Ppm(t).
(2) w* —lim; 6;, = ads for some o > 0.

Moreover, if (1) holds, then (2) holds with cc = C™™"™ /u(t).

Proof. To show that (1) implies (2), as well as the “moreover” statement, we
only need to observe that, due to our selection of (A, ), we have lim; pu(t;) =
1. We need to establish the converse.

First show that m > n. If m < n, then find an open set U C K], containing
t. By Proposition there exists z € X so that 0 < x <1 = =(t), which
vanishes on K,\U and on Kj for j < n. In particular, 5t(x) # 0, while
o;,(x) = 0 for any 7. This contradicts (2).

Thus m > n. Next show that ¢ € D(n,m) and s = ¢nm(t). Suppose,
for the sake of contradiction, that either ¢t ¢ D(n,m), or t € D(n,m) and
$ # ¢dpm(t). Find the smallest i < m so that s € D(m, i), and let 8" = @i (s).
Then t # s'. By Lemma there exists x € X so that z(¢t) = 1 and
2(s") = 0, hence also z(s) = 0. We observe that d;(z) # 0 and lim; &, () = 0,
again contradicting (2). O

Lemma 3.6. Suppose we are given t € K|, and a sequence (t;) C K'\{t}.
Then the following are equivalent:

(1) There exists m > n so that for i large enough, t; € K/ . Further-
more, (t;) converges to 8 = Gpm(t).
(2) w* —lim; 6;, = ady for some o > 0.

Moreover, if (1) holds, then, in (2), oo = C"™™ ™ /u(t).
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Proof. Lemma shows that (1) implies (2), as well as the “moreover”
conclusion. To establish (2) = (1), find, for each i, m(i) € N so that
tie K (i) We shall show that the sequence (m(7)) is eventually constant.
First we show that (m(i)) is bounded. Indeed, otherwise we can find a
sequence (ip) so that lim, m(i,) = co. Clearly limz(t;,) = 0 for any x € X,
hence &-p Ti; 0.

Now suppose, for the sake of contradiction, that (m(7)) does not stabilize.
Passing to a subsequence, we can assume that there exists mj # msg so
that m(i) = my if ¢ is odd, and m(i) = mg is even if 7 is even. Further,
we can assume that (t2;—1) and (f9;) converge to s1 € K, and s € Ky,
respectively. From Lemma mi,mg > n, ty; — S2 = Pmun(t), and
w* — lim; 5,51. = 5t/(C’m2_”u(t)). Similarly, to;—1 — $1 = Pmyn(t), and w* —
lim; &, = 0;/(C™ "u(t)). Thus, 1/a = C™"p(t) = C™"y(t), which
leads to the impossible conclusion m; = ms.

Thus, the sequence (m(i)) is eventually constant. To conclude the proof,
invoke Lemma [3.5} (]

Lemma 3.7. Suppose t € K’ is not hereditarily isolated. Then there exists

a sequence (t;) C K' so that &i N ady, for some o € (0,1]. Moreover, for
every such sequence there exists r € {0,1,2,...} so that « = 1/(C"u(t)).

Proof. Suppose first ¢ is not isolated in K,. Then t cannot be isolated in
the open subset K/, C K, so we can find a sequence (t;) C K, converging
to t. Clearly d;, — J; (in the weak™ topology). Moreover, p(t;) — 1, hence
8y, — ady, where o = 1/p(t) € (1/¢, 1].

Now suppose ¢ is isolated in K, (equivalently, in K},). Use Proposition [2.11]
to find the smallest m > n s.t. s = @ (t) is not isolated in K,,. We claim
that K, is non-empty, and s belongs to the closure. Indeed, as t € K/, s
cannot belong to D(m, k) with k < n. In addition, if s € D(m, k) for some
n < k < m, then s is an isolated point of D(m, k), due to the minimality
of m. Consequently, s is an isolated point of Uiy, D(m, k). As s is not
isolated in K,,, we can find a sequence (t;) C K|, converging to t. Then

¢, N C"=™§,, hence 8y, — ady, where a = C"™ /u(t) € (C" [e, O™,

Now suppose 5t¢ wy Oé(ig, for some a € (0, 1]. By Lemma there exists m
so that t; € K,,, for m large enough; and furthermore, t; — ¢ (t). As in
the previous paragraph, a = C™ ™/ u(t). O

Theorem [3.1] — completion of the proof. Suppose T is a lattice isometry on
(X, I-H- By Subsection it suffices to show that T*§;, = &, for any
t € K'. As T* maps normalized atoms to normalized atoms, T*St = 55,
where s = 1(t) € K'. By Lemma P(t) =t if ¢ is hereditarily isolated.
As the set A of normalized atoms is identified with {5,5 te K’ }, we conclude
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that ¢ is not hereditarily isolated iff ¢ (¢) satisfies the same condition. For
future use, note that if ¢ is hereditarily isolated, then ¢t = t;,, for some %, n.

Now suppose t is not hereditarily isolated. Let s = ¢(t). In light of Lemma
there exists a sequence (u;) C K’ so that 5u1 li> Oé(§t. Moreover, for every
such sequence,
1
p(t)
Being isometric and weak® to weak® continuous, 7™ preserves v(-), hence
w((t)) = p(t), for any t € K'.
Recall that t;, is the unique point ¢ with p(t) = Ai,. Consequently, ¥ (t;,) =
tin, or equivalently, T*6;, = b, .

=v(t) = Sup{C’ka ke {0,1,2,...},C*a < 1}.

Now suppose t € K'\(U; n{ti }) is not hereditarily isolated. Find a sequence
(tijnj)j which converges to ¢,y (t) for some m > n. By Lemma

W* — lim 5151” = C’”_mét,
ij 3"

hence, due to the weak® to weak* continuity of T,
* s EEN — (m—mg§
w hjm T (5151.]_”]_ C Syp(t)s

However, the left hand sides of the two centered expressions coincide, hence

P(t) =t. O
Remark 3.8. In Theorem the desired renorming cannot be an AM-
space if the number of atoms exceeds 1. Indeed, suppose ai,...,a, are
normalized atoms in an AM-space X, and let Xo = {a1,...,a,}*. If 7 is

a permutation of {1,...,n}, then T : X — X, defined by Ta; = a,(; and
Tx = x for x € Xg, is an isometry. Thus, any AM renorming of a space
with more than one atom will have non-trivial lattice isometries.
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