
RENORMING AM-SPACES

T. OIKHBERG AND M.A. TURSI

Abstract. We prove that any separable AM-space X has an equivalent
lattice norm for which no non-trivial surjective lattice isometries exist.
Moreover, if X has no more than one atom, then this new norm may be
an AM-norm. As our main tool, we introduce and investigate the class
of so called Benyamini spaces, which “approximate” general AM-spaces.

1. Introduction

The question of renormings has been extensively studied in the Banach space
literature. The goal is to equip a prescribed Banach space with an equivalent
norm in a way that alters its isometric properties in a certain desirable way
(the isomorphic properties meanwhile remain the same). Many results of
this type appear in [4]; for more modern treatment see [5] or [6].

We are interested in producing a renorming with a prescribed group of isome-
tries (throughout this paper, all isometries are assumed to be linear and sur-
jective unless specified otherwise). One of the first results appeared in [2];
there, it was shown that any separable real Banach space can equipped with
an equivalent norm for which there are only two isometries – the identity and
its opposite. The separability assumption was later removed in [10]. More
recent papers [7], [8], [9] deal with renorming a separable Banach space in a
way that produces a prescribed group of isometries.

In this work, we consider lattice renormings of separable AM-spaces. Re-
call that an AM-space is a Banach lattice in which the equality ‖x ∨ y‖ =
max{‖x‖, ‖y‖} for any positive x and y; a lattice norm with this property is
called an AM-norm. We also restrict oursleves to lattice isometries – that
is, surjective (linear) isometries which preserve lattice operations. Our main
result is:

Theorem 1.1. Suppose (X, ‖ · ‖) is a separable AM-space, and c > 1. Then
X can be equipped with an equivalent lattice norm |||·||| so that ‖ · ‖ ≤ |||·||| ≤
c‖ ·‖, and the identity map is the only lattice isometry on (X.|||·|||). If X has
no more than one atom, then |||·||| can be chosen to be an AM-norm.

The restriction on the number of atoms is essential; see Remark 3.8.
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The proof of Theorem 1.1 proceeds in two steps. In Section 2, we introduce a
new class of AM-spaces, which we call “Benyamini spaces,” for their original
discoverer [3]. We establish that any separable AM-space can be transformed
into a Benyamini space with arbitrarily small distortion; this result may be
interesting in its own right. In Section 3 we renorm a Benyamini space,
eliminating all non-trivial isometries (the new norm may cease to be an
AM-norm if more than one atom is present). The proof of Theorem 1.1
then follows by combining Proposition 2.3 and Theorem 3.1.

Throughout this paper, we use the standard functional analysis facts and
notation. For more detail, the reader is referred to e.g. [11] and [12]. All
spaces are assumed to be separable, and the field of scalars is that of real
numbers. For a normed space Y , we use the notation B(Y ) = {y ∈ Y :
‖y‖ ≤ 1}. If Y is an ordered space and A ⊂ Y , we denote by A+ the
positive part of A – that is, {a ∈ A : a ≥ 0}.

2. Benyamini spaces

Here we investigate a class of AM-spaces – the Benyamini spaces. Such
spaces are flexible: any separable AM-space can be transformed into a space
of this form (Proposition 2.3). On the other hand, Benyamini spaces can
be easily analyzed, since they have a concrete representation, similar to a
C(K) space. In particular, we describe atoms in, and duals of, such spaces
in Subsections 2.3 and 2.4, respectively.

2.1. Definition and basic properties.

Definition 2.1. We say that a Banach lattice X is a C-Benyamini space
(the constant C > 1 will often be omitted) if it is a sublattice of C(K),
where:

(1) K is the one point compactification of the union of mutually disjoint
compact sets Kn (K = (∪nKn) ∪ {∞}).

(2) X ⊂ C0(K) – that is, any x ∈ X vanishes at ∞.
(3) X separates points for each Kn (that is, for all t, s ∈ Kn, there exists

x ∈ X such that x(t) 6= x(s)).
(4) If t ∈ Km, s ∈ Kn, and for all x ∈ X, x(t) = λx(s) for some fixed

λ, then λ = Cn−m.

Note that, if X is separable, then each Kn is metrizable (due to (3)). Con-
sequently, K is metrizable.

We begin by establishing some properties of Benyamini spaces.

Lemma 2.2. Let K, C, and X ⊆ C0(K) be as above. For n 6= m, define
D(m,n) by

D(m,n) :=
{
t ∈ Km : ∃s ∈ Kn such that ∀x ∈ X,x(t) = Cn−mx(s)

}
.

Then D(n,m) is closed and homeomorphic to D(m,n).
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Proof. Define φmn : D(m,n)→ D(n,m) by setting φmn(t) to be the unique
s ∈ D(n,m) with the property that x(t) = Cn−mx(s) for any x ∈ X.
Because X separates points for each Kn, φmn is well defined and injective.
By definition of D(m,n), it is bijective, and φnm = φ−1mn. To show continuity,
suppose tk → t ∈ D(m,n) with tk ∈ D(m,n). Suppose there exists a
subsequence sj = φmn(tkj ) → s 6= φmn(t) (we can limit ourselves to such a
case since Km is compact). Then for all x ∈ X,

x(s) = limx(sj) = lim
j
Cm−nx(tkj ) = Cm−nx(t) = x(φm,n(t)),

which is a contradiction, since X separates points. To prove that D(m,n)
is closed, suppose tk → t. Then for all x ∈ X,

x(t) = lim
k
x(tk) = Cn−m lim

k
x(φmn(tk)).

By compactness, we assume that φmn(tk) → s ∈ Kn. Hence for all x ∈
X,x(t) = Cn−mx(s), so s ∈ D(m,n). �

The importance of Benyamini spaces stems from the fact that any separable
AM-space can be “approximated” by a Benyamini space.

Proposition 2.3. If X is a separable AM-space, then for every C > 1 there
exists a Benyamini space X ′ and a surjective lattice isomorphism Φ : X →
X ′ so that for all x ∈ X, ‖x‖ ≤ ‖Φ(X)‖ ≤ C‖x‖.

The proof below is similar to that of [3, Lemma 1].

Proof. We can assume that X ⊂ C(H) for some Hausdorff compact H.
First, as in [3], we consider the set F := ∩x∈Xx−1(0). If F 6= ∅, identify F
with a single point z by passing from K to K/F . Let xn be a dense sequence
in B(X)+. Let ψ = (C − 1)

∑∞
n=1C

−nxn. Clearly ψ belongs to X.

Let Hn = {t ∈ H : C−n ≤ ψ(t) ≤ C−n+1}. If infintely many Hn’s are

non-empty, let H̃n be disjoint copies of Hn, and let H̃ = (∪nH̃n)
⋃
{∞} be

the one point compactification of
⋃
H̃n. Otherwise, let H̃ =

⋃
n H̃n. Define

the map Ψ : H̃ → H sending H̃n to Hn and∞ to z. Note that if F is empty,
then ψ(t) > 0 for all t ∈ K, and since ψ itself is continuous, its image is
compact and so must be bounded below; then Hn = ∅ for n large enough.
Otherwise, ψ vanishes only at z. In either case, Ψ is a continuous surjection

from H̃ onto H, which implies that C(H) embeds into C(H̃) isometrically

via the map x 7→ Ψ̃x := x ◦Ψ.

Now define a lattice isomorphism U : C0(H̃) → C0(H̃) by setting, for x ∈

C0(H̃), [Ux](∞) = 0, and [Ux](t) =
C1−nx(t)

(Ψ̃ψ)(t)
. Observe that ‖Ux‖ ≤

‖x‖ ≤ C‖x‖. Then T = U ◦ Ψ̃ is a lattice homomorphism, and Y = T (X)

is a sublattice of C0(H̃). We claim that, if t ∈ H̃m and s ∈ H̃n are such
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that y(t) = λy(s) for any y ∈ Y ′, then λ = Cn−m. Indeed, y = Tx for some
x ∈ X, so

λ =
y(t)

y(s)
=
C1−mx(Ψ(t))

ψ(Ψ(t))
· ψ(Ψ(s))

C1−nx(Ψ(s))
= Cn−m · x(Ψ(t))

x(Ψ(s))
· ψ(Ψ(s))

ψ(Ψ(t))
.

From this, it follows that x(Ψ(t))/x(Ψ(s)) is a constant on X. Either Ψ(t) =
Ψ(s), or t′ = Ψ(t) and s′ = Ψ(s) are “defining points” for X ⊂ C(H) – that
is, x(t′)/x(s′) is independent of x ∈ X. Either way, λ = Cn−m.

Finally, we transform the sets H̃n into sets Kn, whose points are separated

by X ′. By the preceding paragraph, if t, s ∈ H̃n are such that y(t) = λy(s)

for any y ∈ Y , then λ = 1. Define an equivalence relation on H̃: t ∼ s
if for all y ∈ Y, y(s) = y(t). Clearly the equivalence classes are closed,

hence each quotient space Kn := H̃n/ ∼ is compact. Identify H̃/ ∼ with
K = (∪nKn)∪{∞}, which is the one-point compactification of ∪nKn. Define
Φ : Y → C0(K) by setting, for y ∈ Y , [Φy]([t]) = y(t), where [t] is the
equivalence class of t. Clearly Φ is a lattice isometry. X ′ = Φ(Y ) is a
Benyamini space, and Φ ◦ T : X → X ′ is a lattice isomorphism with desired
properties. �

Remark 2.4. The Benyamini space X ′, constructed from X using Proposi-
tion 2.3, may have a different group of isometries. We do not know whether
the Benyamini space can be constructed while preserving the group of isome-
tries (or even a subgroup thereof).

2.2. Extension of functions in Benyamini spaces. We say that a func-
tion x ∈ C(KM ∪ . . . ∪KN ) is consistent if x(s) = Cn−mx(φmn(s)) when-
ever s ∈ D(m,n), with M ≤ n,m ≤ N . We shall say that a family
of functions xn ∈ C(Kn) (M ≤ n ≤ N) is consistent if the function
x ∈ C(KM ∪ . . . ∪KN ), defined via x|Kn = xn, is consistent.

Proposition 2.5. (1) If L ≤ N , and x ∈ C(KL ∪ . . .∪KN ) is a consistent
function, then there exists x̃ ∈ X so that x̃|K1∪...∪KN = x, and, for j /∈
{L, . . . , N}, supKj |x̃| ≤ maxL≤i≤N C

i−j supKi |x|.
(2) If, furthermore, y ∈ X+ is such that 0 ≤ x ≤ y on KL ∪ . . . ∪KN , then
x̃ can be selected in such a way that, in addition, 0 ≤ x̃ ≤ y.

Remark 2.6. In a similar fashion, one can show that if y, z ∈ X are such
that z ≤ x ≤ y on KM ∪ . . .∪KN , then x̃ can also be selected in such a way
that z ≤ x̃ ≤ y.

The proof of Proposition 2.5 is obtained by combining Lemmas 2.7 and 2.9.

First we deal with “downward” extensions.

Lemma 2.7. (1) If x ∈ C(K1 ∪ . . . ∪ KN ) is a consistent function, then
there exists x̃ ∈ X so that x̃|K1∪...∪KN = x, and, for j > N , supKj |x̃| ≤
max1≤i≤N C

i−j supKi |x|.
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(2) If, furthermore, y ∈ X+ is such that 0 ≤ x ≤ y on K1 ∪ . . . ∪KN , then
x̃ can be selected in such a way that, in addition, 0 ≤ x̃ ≤ y.

Proof. (1) We define x̃ recursively. Suppose x̃|K1∪...∪KM−1
, with M−1 ≥ N ,

has already been defined in such a way that supKj |x̃| ≤ max1≤i≤N C
i−j supKi |x|

whenever N < j < M . Define now x̃ on KM . If t ∈ D(M, j) for some j < M ,
set x(t) = Cj−Mx(φMj(t)). Note that x is well-defined on ∪j<MD(M, j): if

t ∈ D(M, j) ∩ D(M, i), then Cj−Mx(φMj(t)) = Ci−Mx(φMi(t)). Also, for

such t, |x(t)| ≤ max1≤i≤N C
i−M supKi |x|.

Moreover, x̃ is continuous on the closed set D(M, j) for every j < M , and
thus also on ∪j<MD(M, j). Extend x̃ to a continuous function on KM

without increasing the sup-norm.

Finally, set x̃(∞) = 0. The function x̃ thusly defined belongs to X. In-
deed, it is continuous on each of the sets Kn, and also at ∞, given that
supKj |x̃| ≤ const·C−j . Finally, if t ∈ D(n,m), then x̃(t) = Cm−nx̃(φnm(t)).

(2) Modify the recursive process from part (1). Suppose x̃|K1∪...∪KM−1
,

where M − 1 ≥ N , has already been defined in such a way that 0 ≤ x̃ ≤
y|K1∪...∪KM−1

on K1 ∪ . . . ∪KM−1 and supKj x̃ ≤ max1≤i≤N C
i−j supKi x

whenever N < j < M . Define now x̃ on KM . If t ∈ D(M, j) for some
j < M , set x(t) = Cj−Mx(φMj(t)). As before, observe that x is well-defined
on ∪j<MD(M, j). Clearly, for t ∈ D(M, j),

0 ≤ x̃(t) ≤ y(t), and x̃(t) ≤ max
1≤i≤N

Ci−M sup
Ki

x.

Also, x̃|∪j<MD(M,j) is continuous. Therefore, we can find u ∈ C(KM ) so that

sup
KM

|u| = sup
∪j<MD(M,j)

|x̃| ≤ max
1≤i≤N

Ci−M sup
Ki

|x|.

To define x̃ on KM , set x̃ = u ∧ y. �

We shall use the notation K ′n = Kn\(∪m<nD(n,m)), and K ′ = ∪nK ′n (note
that these sets are open).

In a manner similar to the preceding lemma, one can prove:

Lemma 2.8. Suppose m ≤ n, t ∈ K ′m, s ∈ K ′n, and U ⊂ K ′m, V ∈ K ′n are
disjoint open sets with the property that t ∈ U ⊂ U ⊂ K ′m and s ∈ V ⊂ V ⊂
K ′n. Then for α, β ∈ [0,∞), there exists x ∈ X+ so that:

(1) For j < m, x|Kj = 0.
(2) x(t) = α, x(s) = β, x ≤ α on U , and x ≤ β on V .
(3) If m < n, then x|Km\U = 0.

(4) If m < n, then for m < j < n, 0 ≤ x|Kj ≤ Cm−jα.

(5) On Kn, 0 ≤ x ≤ Cm−nα ∨ β.
(6) For j > n, 0 ≤ x|Kj ≤ (Cm−jα) ∨ (Cn−jβ).
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Proof. We shall consider the case of m < n (that of m = n is handled
similarly). In light of Lemma 2.7, it suffices to construct a consistent family
of functions xj ∈ C(Kj), with j ≤ n, satisfying the properties listed above.
For j < m, simply set xj = 0. Define xm ∈ C(Km)+ which vanishes outside
of U and satisfies 0 ≤ x ≤ α = x(t).

Use Lemma 2.7 to find xj ∈ C(Kj) so that the family (xj)j<n is consistent
and xj ≤ Cm−jα.

Define xn ∈ C(Kn) in such a way that:

(1) xn = 0 on ∂V , and 0 ≤ xn ≤ β = xn(s) on V .
(2) xn(t) = Cj−nxj(φnj(t)) whenever t ∈ D(n, j) for some j < n.

Such a function xn exists, since V is disjoint from ∪j<nD(n, j). Furthermore,
the family (xj)j≤n is consistent. To define xj for j > n, again invoke Lemma
2.7. �

Next we consider “upward” extensions.

Lemma 2.9. (1) If L ≤ N , and x ∈ C(KL ∪ . . . ∪ KN ) is a consis-
tent function, then there exists a consistent x̃ ∈ C(K1 ∪ . . . ∪KN ) so that
x̃|KL∪...∪KN = x, and for j < L, supKj |x̃| ≤ maxL≤i≤N C

i−j supKi |x|.
(2) If, furthermore, y ∈ X+ is such that 0 ≤ x ≤ y on KL ∪ . . . ∪KN , then
x̃ can be selected in such a way that, in addition, 0 ≤ x̃ ≤ y.

Proof. We only prove (1), as (2) is handled similarly (compare with the
proof of Lemma 2.7).

Define x̃ recursively. Suppose x̃|KM+1∪...∪KN (M + 1 ≤ L) has already

been defined in such a way that supKj |x̃| ≤ maxL≤i≤N C
i−j supKi |x| when-

ever M < j < N . Now define x̃ on KM . If t ∈ D(M, j) for some
j ∈ {M + 1, . . . , N}, set x(t) = Cj−Mx(φMj(t)). Note that x is well-defined

on ∪N≤j<MD(M, j): if t ∈ D(M, j) ∩ D(M, i), then Cj−Mx(φMj(t)) =

Ci−Mx(φMi(t)). Also, for such t, |x(t)| ≤ max1≤i≤N C
i−M supKi |x|.

As x̃|∪M<j≤ND(M,j) defined above is continuous, we can extend it to the
whole KM , without increasing the sup-norm. �

2.3. Atoms in a Benyamini space.

Definition 2.10. A point k ∈ K ′ is called hereditarily isolated if it is an
isolated point of K ′n for some n ∈ N, and φnm(k) is isolated in Km whenever
k ∈ D(n,m).

For a point k like this, we can define a function θk ∈ X by setting θk(k) =
1, θk(φnm(k)) = Cn−m whenever k ∈ D(n,m), and θk(t) = 0 otherwise.
Clearly θk is a normalized atom in X. Our next result claims that all atoms
in X are of this form.
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Proposition 2.11. If x ∈ X is a normalized atom, then x = θk for some
hereditarily isolated point k.

Proof. Suppose x ∈ X is a normalized atom. Find k ∈ K ′n such that x(k) =
1. We now prove that k is a hereditarily isolated point and that x = θk.
In particular, we must show that if k ∈ D(n,m), then φnm(x) is isolated in
Km (note that here, m ≥ n necessarily).

Suppose, for the sake of contradiction, that km = φnm(k) is not isolated in
Km for some m. Find the smallest such m. Find distinct a1, a2 ∈ Km so
that x(a1), x(a2) > 1/2. Find y ∈ C(Km) so that 0 ≤ y ≤ x|Km , y1(a1) = 1

2 ,
and y(a2) = 0. By Proposition 2.5, there exists ỹ ∈ [0, x] ⊂ X such that
ỹ|Km = y. By our choice of y, ỹ cannot be a scalar multiple of x. Thus x is
not an atom, which is the desired contradiction. �

2.4. The dual of a Benyamini space.

Lemma 2.12. Let X and K ′ be as above. Then X∗ is lattice isometric to
M(K ′).

Proof. Any measure on K ′ determines a linear functional on X; this gives
rise to a contraction i : M(K ′) → X∗. We prove that i is a surjective
isometry by showing that any x∗ ∈ X∗ can be represented by µ ∈ M(K ′)
with ‖µ‖ ≤ ‖x∗‖. By the Hahn-Banach Theorem, x∗ extends to a functional
on C(K) of the same norm; the latter is implemented by a measure µ ∈
M(K), with ‖µ‖ = ‖x∗‖. By removing a point mass at ∞, we can and do
assume that µ lives on ∪nKn.

We claim that µ vanishes on K\K ′. Indeed, otherwise find the smallest
value of n for which µ does not vanish on Kn\K ′n; then µ|∪j<nD(n,j) 6= 0.

Find the smallest j so that µ|D(n,j) 6= 0. Then the measure

µ′ = µ− µ
∣∣
D(n,j)

+ Cj−nµ
∣∣
D(n,j)

◦ φjn

implements the same functional x∗; here, for x ∈ C(K), we define
[
µ
∣∣
D(n,j)

◦
φjn
]
(x) to be µ

∣∣
D(n,j)

(
x
∣∣
D(j,n)

◦φnj
)
. Note that µ′(E) = µ(E)+Cj−nµ(φjn(E))

for E ⊂ D(j, n), µ′(E) = 0 for E ⊂ D(n, j), and µ′(E) = µ(E) if E is dis-
joint from D(n, j) ∪ D(j, n). Furthermore, µ′|Km = µ|Km for m /∈ {j, n},
µ′|Kn = µ|Kn\D(n,j), and µ′|Kj = µ|Kj + Cj−nµ

∣∣
D(n,j)

◦ φjn. It follows that

‖µ′|Kn‖ = ‖µ|Kn‖ − ‖µ|D(n,j)‖,

while

‖µ′|Kj‖ ≤ ‖µ|Kj‖+ Cj−n‖µ|D(n,j)‖,
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Therefore,

‖µ′‖ =
∑
i

‖µ′|Ki‖ = ‖µ′|Kn‖+ ‖µ′|Kj‖+
∑

i/∈{j,n}

‖µ′|Ki‖

≤ (Cj−n − 1)‖µ|D(n,j)‖+
∑
i

‖µ|Ki‖ <
∑
i

‖µ|Ki‖ = ‖x∗‖,

a contradiction.

It is clear that the map i is positive (a positive measure generates a positive
functional). We now show that i is bipositive: if µ ∈M(K ′) is not a positive
measure, then the corresponding functional is not positive either. We can
write µ = (µn), with (µn) concentrated on K ′n. Note that ‖µ‖ =

∑
n ‖µn‖.

Find N ∈ N so that µn ≥ 0 for n < N , but µN is not positive. By
the regularity of the measure µN , we can find a positive xN ∈ C(KN ),
vanishing on ∪j<ND(N, j), so that µN (xN ) < 0. By scaling, we can and
do assume that ‖xN‖∞ = 1. Let δ = −µN (xN )/3. Find M > N so that∑

j>M CN−j‖µj‖ < δ.

For j < N , let xj be the zero function on Kj . For N < j ≤M , find an open
set Uj ⊂ Kj containing ∪i<jD(j, i) with ‖µj |Uj‖ < δ/M . Now use Lemma
2.7 to define, recursively, a consistent family of functions xj (j > N) so that
‖xj‖ ≤ CN−j and xj vanishes outside of Uj for N < j ≤ M . By our choice
of Uj , we have |µj(xj)| ≤ δCN−j/M for N < j ≤ M ; for j > M , we have
|µj(xj)| ≤ δCN−j‖µj‖. Merge all the xj ’s into a function x ∈ X. Then

µ(x) ≤ µN (xN ) +
∑
j>N

|µj(xj)| ≤ −3δ +
M∑

j=N+1

CN−j
δ

M
+
∑
j>M

CN−j‖µj‖

< −3δ + (M −N + 1)
δ

M
+
∑
j>M

CN−j‖µj‖ < −3δ + δ + δ = −δ,

which shows that the linear functional determined by µ is not positive.

We have established that i : M(K ′)→ X is a bipositive surjective isometry.
By [1], i is a lattice isometry. �

We shall denote by A1 the set of normalized atoms of X∗. By Lemma 2.12,
X∗ = M(K ′), hence A1 = {δt : t ∈ K ′} ⊂ B(X∗)+. Below we show that
A1 (equipped with the weak∗ topology inherited from X∗) is topologically
homeomorphic to K ′.

Lemma 2.13. The map j : K ′ → A1 : t 7→ δt is a homeomorphism.

Proof. To establish the continuity of j, suppose the net tα converges to t in
K ′. By continuity, δtα(x) = x(tα) → x(t) = δt(x) for any x ∈ X, hence
δtα → δt in the weak∗ topology.

For the continuity of j−1, consider a net (tα) ⊂ A1 so that δtα → δt ∈ A1

in the weak∗ topology – that is, x(tα) → x(t) for any x ∈ X. By the
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compactness of K, it suffices to show that the limit of any convergent subnet
of (tα) is t.

Suppose (t′β) is a subnet of (tα), which converges to s ∈ K. Then for any

x ∈ X, we have x(s) = limβ x(t′β) = x(t). As x(t) is not always 0, part (2)

of Definition 2.1 implies s 6=∞. Further, x(t) = x(s) for any x ∈ X, hence
parts (3) and (4) of Definition 2.1 show that t = s.

�

3. Renormings of Benyamini spaces

Theorem 3.1. Suppose (X, ‖·‖) is a Benyamini space. Then, for any c > 1,
X can be equipped with an equivalent norm |||·||| so that ‖·‖ ≤ |||·||| ≤ c2‖·‖, so
that the identity is the only lattice isometry on (X, |||·|||). If X has no more
than one atom, then |||·||| can be selected to be an AM-norm.

Remark 3.2. The restriction on the number of atoms is essential here; see
Remark 3.8.

The rest of this section is devoted to proving Theorem 3.1.

Assume that X is a C-Benyamini space (C < 2) and that c < 3
√
C. Let A

and B be the sets of all n ∈ N for which K ′n is infinite, resp. finite and non-
empty. For n ∈ B, write K ′n = {t1n, . . . , tpnn}. For n ∈ A, find a sequence
t1n, t2n, . . . of distinct elements of K ′n which is dense in K ′n. Find a family
(λin)n∈A∪B ⊂ (1, c) of distinct numbers so that: (i) for n ∈ A, c > λ1n >
λ2n > . . ., and limi λin = 1; (ii) for n ∈ B, c > λ1n > . . . > λpnn > 1. For
each t ∈ K ′, let µ(t) = λin if t = tin for some i and n, µ(t) = 1 otherwise.

Denote the normalized atoms of X by (θi)i∈I , where the set I is countable.
By Proposition 2.11, each θi corresponds with a hereditarily isolated point
ai ∈ K ′. Furthermore, for each i, there exists a canonical band projection
Pi onto span[θi]. Then Pix = x(ai)θi.

Our definition of |||·||| would depend on the cardinality of I.

|I| = 0. For x ∈ X set

(3.1) |||x||| = sup
t∈K′

µ(t)|x(t)|.

|I| = 1. Write I = {1}; represent X as X1 ⊕ R, where X1 = kerP1 is a

C-Benyamini space (with the underlying space obtained by removing from
K all the points φnm(a1), when a1 ∈ Kn and m ≥ n). Let |||·|||1 be the norm
defined on X1 using (3.1) (with some collection (tni)). Let

(3.2) |||x||| = max
{
|||(I − P1)x|||1, ‖P1x‖

}
.

|I| > 1. Write I = {1, . . . ,m} (2 ≤ m <∞) or I = N. Let P = {(i, j) ∈ I2 :

i < j}, and let π : P → N be an injection. For (i, j) ∈ P, let ‖ · ‖i,j be the
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norm on R2 whose unit ball is an octagon with vertices(
±
(

1− c− 1

c(2π(i, j) + 1)

)
,±1

)
and

(
± 1,±

(
1− c− 1

2cπ(i, j)

))
We mention some properties of the norms ‖ · ‖i,j , to be used in the sequel.

N1 ‖ · ‖∞ ≤ ‖ · ‖i,j ≤ c‖ · ‖∞.
N2 The formal identity (R2, ‖·‖i1,j1)→ (R2, ‖·‖i2,j2) (with the first vector of

the canonical basis mapping to the first, and the second – to the second)
is an isometry iff i1 = i2 and j1 = j2. This follows from a comparison of
extreme points.

N3 For γ > 1 and k ∈ I, there exists L = L(k, γ) ≥ k so that ‖·‖k,j ≤ γ‖·‖∞
for j > L.

N4 For γ > 1, there exists M = M(γ) so that ‖ · ‖i,j ≤ γ‖ · ‖∞ whenever
j > i > M .

N5 If |α| ∨ |β| = 1 and |α| ∧ |β| ≤ 1/c, then ‖(α, β)‖ij = 1.

We let

(3.3) |||x||| = max
{

sup
t∈K′

µ(t)|x(t)|, sup
(i,j)∈P

∥∥(µ(ai)x(ai), µ(aj)x(aj)
)∥∥
i,j

}
.

Clearly, we always have ‖ ·‖ ≤ |||·||| ≤ c2‖ ·‖ (in fact, if |I| ≤ 1, we can replace
c2 by c). It is also clear that for |I| ≤ 1, |||·||| is an AM-norm. To show that
the only lattice isometry on (X, |||·|||) is the trivial one, we need a series of
lemmas. As the proof for |I| = 1 follows immediately from that for |I| = 0,
we shall only consider the cases of I = ∅ and |I| ≥ 2.

First we establish the norms of point masses. Let δ̂t = µ(t)δt.

Lemma 3.3. For any t ∈ K ′,
∣∣∣∣∣∣∣∣∣δ̂t∣∣∣∣∣∣∣∣∣ = 1.

Proof. For x ∈ X and t ∈ K ′, we clearly have |||x||| ≥ µ(t)|x(t)| =
∣∣δ̂t(x)

∣∣,
hence

∣∣∣∣∣∣∣∣∣δ̂t∣∣∣∣∣∣∣∣∣ ≤ 1. It remains to prove the opposite inequality.

Fix t ∈ K ′ and γ > 1. We need to find x ∈ X+ such that x(t) = 1/µ(t) and
|||x||| ≤ γ. To this end, find n so that t ∈ K ′n. Next, construct a finite set
V ⊂ K ′n consisting of “potentially troublemaking” points. If |I| = ∅, let

V = {s ∈ K ′n : µ(s) > γµ(t)}.
If |I| ≥ 2 and t is not hereditarily isolated, let

V = {s ∈ K ′n : µ(s) > γµ(t)} ∪ {ai ∈ K ′n : i ≤M(γ)},
with M(γ) as in [N4].

If |I| ≥ 2 and t is hereditarily isolated, then t = ak for some k. Let

V = {s ∈ K ′n : µ(s) > γµ(t)} ∪ {ai ∈ K ′n : i ≤M(γ) ∨ L(k, γ)}\{ak},
where L(k, γ) comes from property [N3].
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The set V is finite and does not contain t. Find an open set U ⊂ K ′n\V
containing t. Find x ∈ C(Kn) such that x vanishes outside of U and 0 ≤
x ≤ 1/µ(t) = x(t). Define x to be 0 on Km for m < n. This function is
consistent, so by Proposition 2.5, there exists x̃ ∈ X+ so that x̃|K1∪...∪Kn = x
and ‖x̃‖ = 1/λin.

It remains to show that |||x̃||| ≤ γ2. This will follow if we establish that

(3.4) µ(s)|x̃(s)| ≤ γ for any s ∈ K ′,
and (in the case of |I| ≥ 2)

(3.5)
∥∥(µ(ai)x̃(ai), µ(aj)x̃(aj)

)∥∥
i,j
≤ γ2 for any i < j.

Note that, due to our construction of x̃, x̃(s) = 0 if s ∈ K ′m with m < n.
For s ∈ K ′n, we have x̃(s) = 0 for s /∈ U , while for s ∈ U , µ(s) ≤ γµ(t),
so µ(s)|x̃(s)| ≤ γ. Finally, if s ∈ K ′m for some m > n, we have x̃(s) ≤
Cn−m/µ(t), hence µ(s)|x̃(s)| ≤ c/C < 1 < γ. This establishes (3.4).

To handle (3.5), note that if ai ∈ ∪m<nK ′m ∪ (K ′n\U), then x̃(ai) = 0, and
therefore,∥∥(µ(ai)x̃(ai), µ(aj)x̃(aj)

)∥∥
i,j

=
∥∥(0, µ(aj)x̃(aj)

)∥∥
i,j

= µ(aj)x̃(aj).

The right hand side cannot exceed γ, as discussed in the paragraph relating
to (3.4). The same conclusion holds if aj ∈ ∪m<nK ′m ∪ (K ′n\U).

If ai, aj ∈ ∪`>nK ′`, then x̃(ai), x̃(aj) ≤ 1/(µ(t)C), hence∥∥(µ(ai)x̃(ai), µ(aj)x̃(aj)
)∥∥
i,j
≤ c2

µ(t)C
< 1.

Now consider the case of ai ∈ U , aj ∈ ∪`>nK ′`. In this situation, µ(aj)x̃(aj) <
c/C < c−2, hence, by [N5],∥∥(µ(ai)x̃(ai), µ(aj)x̃(aj)

)∥∥
i,j
≤ γ.

The same conclusion holds if aj ∈ U , ai ∈ ∪`>nK ′`.
Finally, if ai, aj ∈ U , then µ(ai), µ(aj) ≤ γµ(t). By the choice of U ,∥∥(µ(ai)x̃(ai), µ(aj)x̃(aj)

)∥∥
i,j
≤ γ

∥∥(µ(ai)x̃(ai), µ(aj)x̃(aj)
)∥∥
∞ ≤ γ

2.

The same conclusion holds if the roles of ai and aj are reversed. We have
now established (3.5). �

Now suppose T is a surjective lattice isometry on (X, |||·|||). Note first that
T fixes the atoms of X:

Lemma 3.4. For any i ∈ I, Tθi = θi.

Proof. This is obvious if |I| ≤ 1. For |I| ≥ 2, let ei = θi/µ(ai) be the
normalized atoms. By (3.3), for any α, β ∈ R, we have

|||αei + βej ||| =
∥∥(α, β)

∥∥
i,j
.
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If T maps ei and ej to ek and e` respectively, then∥∥(α, β)
∥∥
i,j

=
∥∥(α, β)

∥∥
k,`

for any α, β,

which, in light of Property [N2], implies i = k, j = `. �

Now observe that T ∗ is interval preserving [12, Theorem 1.4.19], hence it
maps atoms of X∗ to atoms. The atoms in X∗ are characterized by Propo-
sition 2.11. By Lemma 3.3, the set of normalized atoms of (X∗, |||·|||) (which

we shall denote by A) coincides with
{
δ̂t : t ∈ K ′

}
.

Thus, by Lemma 3.3, there exists a bijection ψ : K ′ → K ′ so that T ∗δ̂t =
δ̂ψ(t). We shall show that ψ(t) = t is the identity map. In fact, Lemma 3.4
already shows that ψ(t) = t if t is a hereditarily isolated point.

To proceed further, in the next few lemmas we examine weak∗ convergence
in A. For convenience, we denote by φnn the identity map on D(n, n) := Kn.

Lemma 3.5. Suppose m,n ∈ N, t ∈ K ′n, and the sequence (ti) ⊂ K ′m\{t}
converges to s. Then the following are equivalent:

(1) m ≥ n, and s = φnm(t).

(2) w∗ − limi δ̂ti = αδ̂t for some α > 0.

Moreover, if (1) holds, then (2) holds with α = Cn−m/µ(t).

Proof. To show that (1) implies (2), as well as the “moreover” statement, we
only need to observe that, due to our selection of (λjm), we have limi µ(ti) =
1. We need to establish the converse.

First show that m ≥ n. If m < n, then find an open set U ⊂ K ′n containing
t. By Proposition 2.5, there exists x ∈ X so that 0 ≤ x ≤ 1 = x(t), which

vanishes on Kn\U and on Kj for j < n. In particular, δ̂t(x) 6= 0, while

δ̂ti(x) = 0 for any i. This contradicts (2).

Thus m ≥ n. Next show that t ∈ D(n,m) and s = φnm(t). Suppose,
for the sake of contradiction, that either t /∈ D(n,m), or t ∈ D(n,m) and
s 6= φnm(t). Find the smallest i ≤ m so that s ∈ D(m, i), and let s′ = φmi(s).
Then t 6= s′. By Lemma 2.8, there exists x ∈ X so that x(t) = 1 and

x(s′) = 0, hence also x(s) = 0. We observe that δ̂t(x) 6= 0 and limi δ̂ti(x) = 0,
again contradicting (2). �

Lemma 3.6. Suppose we are given t ∈ K ′n and a sequence (ti) ⊂ K ′\{t}.
Then the following are equivalent:

(1) There exists m ≥ n so that for i large enough, ti ∈ K ′m. Further-
more, (ti) converges to s = φnm(t).

(2) w∗ − limi δ̂ti = αδ̂t for some α > 0.

Moreover, if (1) holds, then, in (2), α = Cn−m/µ(t).
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Proof. Lemma 3.5 shows that (1) implies (2), as well as the “moreover”
conclusion. To establish (2) ⇒ (1), find, for each i, m(i) ∈ N so that
ti ∈ K ′m(i). We shall show that the sequence (m(i)) is eventually constant.

First we show that (m(i)) is bounded. Indeed, otherwise we can find a
sequence (ip) so that limpm(ip) =∞. Clearly limx(tip) = 0 for any x ∈ X,

hence δ̂ip
w∗→ 0.

Now suppose, for the sake of contradiction, that (m(i)) does not stabilize.
Passing to a subsequence, we can assume that there exists m1 6= m2 so
that m(i) = m1 if i is odd, and m(i) = m2 is even if i is even. Further,
we can assume that (t2i−1) and (t2i) converge to s1 ∈ Km1 and s2 ∈ Km2 ,
respectively. From Lemma 3.5, m1,m2 ≥ n, t2i → s2 = φm2n(t), and

w∗ − limi δ̂ti = δ̂t/(C
m2−nµ(t)). Similarly, t2i−1 → s1 = φm1n(t), and w∗ −

limi δ̂ti = δ̂t/(C
m1−nµ(t)). Thus, 1/α = Cm2−nµ(t) = Cm1−nµ(t), which

leads to the impossible conclusion m1 = m2.

Thus, the sequence (m(i)) is eventually constant. To conclude the proof,
invoke Lemma 3.5. �

Lemma 3.7. Suppose t ∈ K ′ is not hereditarily isolated. Then there exists

a sequence (ti) ⊂ K ′ so that δ̂ti
w∗→ αδ̂t, for some α ∈ (0, 1]. Moreover, for

every such sequence there exists r ∈ {0, 1, 2, . . .} so that α = 1/(Crµ(t)).

Proof. Suppose first t is not isolated in Kn. Then t cannot be isolated in
the open subset K ′n ⊂ K, so we can find a sequence (ti) ⊂ K ′n, converging
to t. Clearly δti → δt (in the weak∗ topology). Moreover, µ(ti) → 1, hence

δ̂ti → αδ̂t, where α = 1/µ(t) ∈ (1/c, 1].

Now suppose t is isolated in Kn (equivalently, in K ′n). Use Proposition 2.11
to find the smallest m > n s.t. s = φnm(t) is not isolated in Km. We claim
that K ′m is non-empty, and s belongs to the closure. Indeed, as t ∈ K ′n, s
cannot belong to D(m, k) with k < n. In addition, if s ∈ D(m, k) for some
n ≤ k < m, then s is an isolated point of D(m, k), due to the minimality
of m. Consequently, s is an isolated point of ∪k<mD(m, k). As s is not
isolated in Km, we can find a sequence (ti) ⊂ K ′m converging to t. Then

δti
w∗→ Cn−mδt, hence δ̂ti → αδ̂t, where α = Cn−m/µ(t) ∈ (Cn−m/c, Cn−m].

Now suppose δ̂ti
w∗→ αδ̂t, for some α ∈ (0, 1]. By Lemma 3.6, there exists m

so that ti ∈ Km, for m large enough; and furthermore, ti → φmn(t). As in
the previous paragraph, α = Cn−m/µ(t). �

Theorem 3.1 – completion of the proof. Suppose T is a lattice isometry on
(X, |||·|||). By Subsection 2.4, it suffices to show that T ∗δ̂t = δ̂t for any

t ∈ K ′. As T ∗ maps normalized atoms to normalized atoms, T ∗δ̂t = δ̂s,
where s = ψ(t) ∈ K ′. By Lemma 3.4, ψ(t) = t if t is hereditarily isolated.

As the setA of normalized atoms is identified with
{
δ̂t : t ∈ K ′

}
, we conclude
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that t is not hereditarily isolated iff ψ(t) satisfies the same condition. For
future use, note that if t is hereditarily isolated, then t = tin for some i, n.

Now suppose t is not hereditarily isolated. Let s = ψ(t). In light of Lemma

3.7, there exists a sequence (ui) ⊂ K ′ so that δ̂ui
w∗→ αδ̂t. Moreover, for every

such sequence,

1

µ(t)
= ν(t) := sup

{
Ckα : k ∈ {0, 1, 2, . . .}, Ckα ≤ 1

}
.

Being isometric and weak∗ to weak∗ continuous, T ∗ preserves ν(·), hence
µ(ψ(t)) = µ(t), for any t ∈ K ′.
Recall that tin is the unique point t with µ(t) = λin. Consequently, ψ(tin) =

tin, or equivalently, T ∗δ̂tin = δ̂tin .

Now suppose t ∈ K ′\(∪i,n{tin}) is not hereditarily isolated. Find a sequence(
tijnj

)
j

which converges to φmn(t) for some m ≥ n. By Lemma 3.5,

w∗ − lim
j
δ̂tijnj = Cn−mδ̂t,

hence, due to the weak∗ to weak∗ continuity of T ∗,

w∗ − lim
j
T ∗δ̂tijnj = Cn−mδ̂ψ(t),

However, the left hand sides of the two centered expressions coincide, hence
ψ(t) = t. �

Remark 3.8. In Theorem 3.1, the desired renorming cannot be an AM-
space if the number of atoms exceeds 1. Indeed, suppose a1, . . . , an are
normalized atoms in an AM-space X, and let X0 = {a1, . . . , an}⊥. If π is
a permutation of {1, . . . , n}, then T : X → X, defined by Tai = aπ(i) and
Tx = x for x ∈ X0, is an isometry. Thus, any AM renorming of a space
with more than one atom will have non-trivial lattice isometries.
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